miR526b and miR655 Induce Oxidative Stress in Breast Cancer

In eukaryotes, overproduction of reactive oxygen species (ROS) causes oxidative stress, which contributes to chronic inflammation and cancer. MicroRNAs (miRNAs) are small, endogenously produced RNAs that play a major role in cancer progression. We established that overexpression of miR526b/miR655 pr...

Full description

Bibliographic Details
Main Authors: Bonita Shin, Riley Feser, Braydon Nault, Stephanie Hunter, Sujit Maiti, Kingsley Chukwunonso Ugwuagbo, Mousumi Majumder
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/20/16/4039
Description
Summary:In eukaryotes, overproduction of reactive oxygen species (ROS) causes oxidative stress, which contributes to chronic inflammation and cancer. MicroRNAs (miRNAs) are small, endogenously produced RNAs that play a major role in cancer progression. We established that overexpression of miR526b/miR655 promotes aggressive breast cancer phenotypes. Here, we investigated the roles of miR526b/miR655 in oxidative stress in breast cancer using in vitro and in silico assays. miRNA-overexpression in MCF7 cells directly enhances ROS and superoxide (SO) production, detected with fluorescence assays. We found that cell-free conditioned media contain extracellular miR526b/miR655 and treatment with these miRNA-conditioned media causes overproduction of ROS/SO in MCF7 and primary cells (HUVECs). Thioredoxin Reductase 1 (TXNRD1) is an oxidoreductase that maintains ROS/SO concentration. Overexpression of <i>TXNRD1</i> is associated with breast cancer progression. We observed that miR526b/miR655 overexpression upregulates <i>TXNRD1</i> expression in MCF7 cells, and treatment with miRNA-conditioned media upregulates <i>TXNRD1</i> in both MCF7 and HUVECs. Bioinformatic analysis identifies two negative regulators of TXNRD1, TCF21 and PBRM1, as direct targets of miR526b/miR655. We validated that <i>TCF21</i> and <i>PBRM1</i> were significantly downregulated with miRNA upregulation, establishing a link between miR526b/miR655 and TXNRD1. Finally, treatments with oxidative stress inducers such as H<sub>2</sub>O<sub>2</sub> or miRNA-conditioned media showed an upregulation of miR526b/miR655 expression in MCF7 cells, indicating that oxidative stress also induces miRNA overexpression. This study establishes the dynamic functions of miR526b/miR655 in oxidative stress induction in breast cancer.
ISSN:1422-0067