Shape-controlled synthesis of porous AuPt nanoparticles and their superior electrocatalytic activity for oxygen reduction reaction

Control of structure and morphology of Pt-based nanomaterials is of great importance for electrochemical energy conversions. In this work, we report an efficient one-step synthesis of bimetallic porous AuPt nanoparticles (PAuPt NPs) in an aqueous solution. The proposed synthesis is performed by a si...

Full description

Bibliographic Details
Main Authors: Litai Sun, Hongjing Wang, Kamel Eid, Liang Wang
Format: Article
Language:English
Published: Taylor & Francis Group 2016-01-01
Series:Science and Technology of Advanced Materials
Subjects:
Online Access:http://dx.doi.org/10.1080/14686996.2016.1140307
Description
Summary:Control of structure and morphology of Pt-based nanomaterials is of great importance for electrochemical energy conversions. In this work, we report an efficient one-step synthesis of bimetallic porous AuPt nanoparticles (PAuPt NPs) in an aqueous solution. The proposed synthesis is performed by a simple stirring treatment of an aqueous reactive mixture including K2PtCl4, HAuCl4, Pluronic F127 and ascorbic acid at a pH value of 1 without organic solvent or high temperature. Due to their porous structure and bimetallic composition, as-made PAuPt NPs exhibit excellent electrocatalytic activity for oxygen reduction reaction.
ISSN:1468-6996
1878-5514