Technical advance: The use of tree shrews as a model of pulmonary fibrosis.

<h4>Background</h4>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with a high morbidity and mortality. Some of the mechanisms of fibrosis development have been described using rodent models; however, the relevance of findings in these animal models is difficult to...

Full description

Bibliographic Details
Main Authors: Jennifer L Larson-Casey, Chao He, Pulin Che, Meimei Wang, Guoqiang Cai, Young-Il Kim, Mustapha El Hamdaoui, Rafael Grytz, Qiang Ding, A Brent Carter
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0241323
id doaj-e3fb8d8837b248ca9244bbbce1ac8b27
record_format Article
spelling doaj-e3fb8d8837b248ca9244bbbce1ac8b272021-04-07T04:32:35ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-011511e024132310.1371/journal.pone.0241323Technical advance: The use of tree shrews as a model of pulmonary fibrosis.Jennifer L Larson-CaseyChao HePulin CheMeimei WangGuoqiang CaiYoung-Il KimMustapha El HamdaouiRafael GrytzQiang DingA Brent Carter<h4>Background</h4>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with a high morbidity and mortality. Some of the mechanisms of fibrosis development have been described using rodent models; however, the relevance of findings in these animal models is difficult to assess. New innovative models are needed that closely mimic IPF disease pathology.<h4>Methods</h4>To overcome this unmet need of investigating IPF with a relevant model, we utilized tree shrews, which are genetically, anatomically, and metabolically similar to primates and humans. Using human antibodies and primers, we investigated the role of macrophage phenotypic switching in normal and IPF subjects and bleomycin-injured tree shrews.<h4>Results</h4>Bronchoalveolar lavage (BAL) cells from tree shrews expressed human markers, and there was recruitment of monocyte-derived macrophages (MDMs) to the lung in IPF subjects and bleomycin-injured tree shrews. MDMs were polarized to a profibrotic phenotype in IPF and in bleomycin-injured tree shrews. Resident alveolar macrophages (RAMs) expressed proinflammatory markers regardless of bleomycin exposure. Tree shrews developed bleomycin-induced pulmonary fibrosis with architectural distortion in parenchyma and widespread collagen deposition.<h4>Conclusion</h4>The profibrotic polarization of macrophages has been demonstrated to be present in IPF subjects and in fibrotic mice. Although the lung macrophages have long been considered to be homogeneous, recent evidence indicates that these cells are heterogeneous during multiple chronic lung diseases. Here, we show new data that indicate a critical and essential role for macrophage-fibroblast crosstalk promoting fibroblast differentiation and collagen production. in the development and progression of fibrosis. The current data strongly suggest development of therapeutics that attenuate of the profibrotic activation of MDMs may mitigate macrophage-fibroblast interaction. These observations demonstrate that tree shrews are an ideal animal model to investigate the pathogenesis of IPF as they are genetically, anatomically, and metabolically closer to humans than the more commonly used rodent models.https://doi.org/10.1371/journal.pone.0241323
collection DOAJ
language English
format Article
sources DOAJ
author Jennifer L Larson-Casey
Chao He
Pulin Che
Meimei Wang
Guoqiang Cai
Young-Il Kim
Mustapha El Hamdaoui
Rafael Grytz
Qiang Ding
A Brent Carter
spellingShingle Jennifer L Larson-Casey
Chao He
Pulin Che
Meimei Wang
Guoqiang Cai
Young-Il Kim
Mustapha El Hamdaoui
Rafael Grytz
Qiang Ding
A Brent Carter
Technical advance: The use of tree shrews as a model of pulmonary fibrosis.
PLoS ONE
author_facet Jennifer L Larson-Casey
Chao He
Pulin Che
Meimei Wang
Guoqiang Cai
Young-Il Kim
Mustapha El Hamdaoui
Rafael Grytz
Qiang Ding
A Brent Carter
author_sort Jennifer L Larson-Casey
title Technical advance: The use of tree shrews as a model of pulmonary fibrosis.
title_short Technical advance: The use of tree shrews as a model of pulmonary fibrosis.
title_full Technical advance: The use of tree shrews as a model of pulmonary fibrosis.
title_fullStr Technical advance: The use of tree shrews as a model of pulmonary fibrosis.
title_full_unstemmed Technical advance: The use of tree shrews as a model of pulmonary fibrosis.
title_sort technical advance: the use of tree shrews as a model of pulmonary fibrosis.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2020-01-01
description <h4>Background</h4>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with a high morbidity and mortality. Some of the mechanisms of fibrosis development have been described using rodent models; however, the relevance of findings in these animal models is difficult to assess. New innovative models are needed that closely mimic IPF disease pathology.<h4>Methods</h4>To overcome this unmet need of investigating IPF with a relevant model, we utilized tree shrews, which are genetically, anatomically, and metabolically similar to primates and humans. Using human antibodies and primers, we investigated the role of macrophage phenotypic switching in normal and IPF subjects and bleomycin-injured tree shrews.<h4>Results</h4>Bronchoalveolar lavage (BAL) cells from tree shrews expressed human markers, and there was recruitment of monocyte-derived macrophages (MDMs) to the lung in IPF subjects and bleomycin-injured tree shrews. MDMs were polarized to a profibrotic phenotype in IPF and in bleomycin-injured tree shrews. Resident alveolar macrophages (RAMs) expressed proinflammatory markers regardless of bleomycin exposure. Tree shrews developed bleomycin-induced pulmonary fibrosis with architectural distortion in parenchyma and widespread collagen deposition.<h4>Conclusion</h4>The profibrotic polarization of macrophages has been demonstrated to be present in IPF subjects and in fibrotic mice. Although the lung macrophages have long been considered to be homogeneous, recent evidence indicates that these cells are heterogeneous during multiple chronic lung diseases. Here, we show new data that indicate a critical and essential role for macrophage-fibroblast crosstalk promoting fibroblast differentiation and collagen production. in the development and progression of fibrosis. The current data strongly suggest development of therapeutics that attenuate of the profibrotic activation of MDMs may mitigate macrophage-fibroblast interaction. These observations demonstrate that tree shrews are an ideal animal model to investigate the pathogenesis of IPF as they are genetically, anatomically, and metabolically closer to humans than the more commonly used rodent models.
url https://doi.org/10.1371/journal.pone.0241323
work_keys_str_mv AT jenniferllarsoncasey technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT chaohe technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT pulinche technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT meimeiwang technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT guoqiangcai technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT youngilkim technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT mustaphaelhamdaoui technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT rafaelgrytz technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT qiangding technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
AT abrentcarter technicaladvancetheuseoftreeshrewsasamodelofpulmonaryfibrosis
_version_ 1714689562317422592