Integrated Information Theory and Isomorphic Feed-Forward Philosophical Zombies

Any theory amenable to scientific inquiry must have testable consequences. This minimal criterion is uniquely challenging for the study of consciousness, as we do not know if it is possible to confirm via observation from the outside whether or not a physical system knows what it feels like to have...

Full description

Bibliographic Details
Main Authors: Jake R. Hanson, Sara I. Walker
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/11/1073
Description
Summary:Any theory amenable to scientific inquiry must have testable consequences. This minimal criterion is uniquely challenging for the study of consciousness, as we do not know if it is possible to confirm via observation from the outside whether or not a physical system knows what it feels like to have an inside&#8212;a challenge referred to as the &#8220;hard problem&#8221; of consciousness. To arrive at a theory of consciousness, the hard problem has motivated development of phenomenological approaches that adopt assumptions of what properties consciousness has based on first-hand experience and, from these, derive the physical processes that give rise to these properties. A leading theory adopting this approach is Integrated Information Theory (IIT), which assumes our subjective experience is a &#8220;unified whole&#8221;, subsequently yielding a requirement for physical feedback as a necessary condition for consciousness. Here, we develop a mathematical framework to assess the validity of this assumption by testing it in the context of isomorphic physical systems with and without feedback. The isomorphism allows us to isolate changes in <inline-formula> <math display="inline"> <semantics> <mi>&#934;</mi> </semantics> </math> </inline-formula> without affecting the size or functionality of the original system. Indeed, the only mathematical difference between a &#8220;conscious&#8221; system with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#934;</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> and an isomorphic &#8220;philosophical zombie&#8221; with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#934;</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> is a permutation of the binary labels used to internally represent functional states. This implies <inline-formula> <math display="inline"> <semantics> <mi>&#934;</mi> </semantics> </math> </inline-formula> is sensitive to <i>functionally arbitrary aspects of a particular labeling scheme</i>, with no clear justification in terms of phenomenological differences. In light of this, we argue any quantitative theory of consciousness, including IIT, should be invariant under isomorphisms if it is to avoid the existence of isomorphic philosophical zombies and the epistemological problems they pose.
ISSN:1099-4300