Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré Map

The phytoplankton-fish model for catching fish with impulsive feedback control is established in this paper. Firstly, the Poincaré map for the phytoplankton-fish model is defined, and the properties of monotonicity, continuity, differentiability, and fixed point of Poincaré map are analyzed. In part...

Full description

Bibliographic Details
Main Authors: Dezhao Li, Yu Liu, Huidong Cheng
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/8974763
id doaj-e3e95d8907f240f5a820f88e88434134
record_format Article
spelling doaj-e3e95d8907f240f5a820f88e884341342020-11-25T02:36:28ZengHindawi-WileyComplexity1076-27871099-05262020-01-01202010.1155/2020/89747638974763Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré MapDezhao Li0Yu Liu1Huidong Cheng2College of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao, ChinaCollege of Foreign Languages, Shandong University of Science and Technology, Qingdao 266590, Shandong, ChinaCollege of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao, ChinaThe phytoplankton-fish model for catching fish with impulsive feedback control is established in this paper. Firstly, the Poincaré map for the phytoplankton-fish model is defined, and the properties of monotonicity, continuity, differentiability, and fixed point of Poincaré map are analyzed. In particular, the continuous and discontinuous properties of Poincaré map under different conditions are discussed. Secondly, we conduct the analysis of the necessary and sufficient conditions for the existence, uniqueness, and global stability of the order-1 periodic solution of the phytoplankton-fish model and obtain the sufficient conditions for the existence of the order-kk≥2 periodic solution of the system. Numerical simulation shows the correctness of our results which show that phytoplankton and fish with the impulsive feedback control can live stably under certain conditions, and the results have certain reference value for the dynamic change of phytoplankton in aquatic ecosystems.http://dx.doi.org/10.1155/2020/8974763
collection DOAJ
language English
format Article
sources DOAJ
author Dezhao Li
Yu Liu
Huidong Cheng
spellingShingle Dezhao Li
Yu Liu
Huidong Cheng
Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré Map
Complexity
author_facet Dezhao Li
Yu Liu
Huidong Cheng
author_sort Dezhao Li
title Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré Map
title_short Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré Map
title_full Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré Map
title_fullStr Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré Map
title_full_unstemmed Dynamic Complexity of a Phytoplankton-Fish Model with the Impulsive Feedback Control by means of Poincaré Map
title_sort dynamic complexity of a phytoplankton-fish model with the impulsive feedback control by means of poincaré map
publisher Hindawi-Wiley
series Complexity
issn 1076-2787
1099-0526
publishDate 2020-01-01
description The phytoplankton-fish model for catching fish with impulsive feedback control is established in this paper. Firstly, the Poincaré map for the phytoplankton-fish model is defined, and the properties of monotonicity, continuity, differentiability, and fixed point of Poincaré map are analyzed. In particular, the continuous and discontinuous properties of Poincaré map under different conditions are discussed. Secondly, we conduct the analysis of the necessary and sufficient conditions for the existence, uniqueness, and global stability of the order-1 periodic solution of the phytoplankton-fish model and obtain the sufficient conditions for the existence of the order-kk≥2 periodic solution of the system. Numerical simulation shows the correctness of our results which show that phytoplankton and fish with the impulsive feedback control can live stably under certain conditions, and the results have certain reference value for the dynamic change of phytoplankton in aquatic ecosystems.
url http://dx.doi.org/10.1155/2020/8974763
work_keys_str_mv AT dezhaoli dynamiccomplexityofaphytoplanktonfishmodelwiththeimpulsivefeedbackcontrolbymeansofpoincaremap
AT yuliu dynamiccomplexityofaphytoplanktonfishmodelwiththeimpulsivefeedbackcontrolbymeansofpoincaremap
AT huidongcheng dynamiccomplexityofaphytoplanktonfishmodelwiththeimpulsivefeedbackcontrolbymeansofpoincaremap
_version_ 1715437868838551552