Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails?
Abstract Background Confidence intervals for the between study variance are useful in random-effects meta-analyses because they quantify the uncertainty in the corresponding point estimates. Methods for calculating these confidence intervals have been developed that are based on inverting hypothesis...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2016-09-01
|
Series: | BMC Medical Research Methodology |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12874-016-0219-y |
id |
doaj-e3e740b40a6b43cda17eee62c7cb0e4c |
---|---|
record_format |
Article |
spelling |
doaj-e3e740b40a6b43cda17eee62c7cb0e4c2020-11-24T23:55:27ZengBMCBMC Medical Research Methodology1471-22882016-09-0116111510.1186/s12874-016-0219-yConfidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails?Dan Jackson0Jack Bowden1MRC Biostatistics UnitMRC Biostatistics UnitAbstract Background Confidence intervals for the between study variance are useful in random-effects meta-analyses because they quantify the uncertainty in the corresponding point estimates. Methods for calculating these confidence intervals have been developed that are based on inverting hypothesis tests using generalised heterogeneity statistics. Whilst, under the random effects model, these new methods furnish confidence intervals with the correct coverage, the resulting intervals are usually very wide, making them uninformative. Methods We discuss a simple strategy for obtaining 95 % confidence intervals for the between-study variance with a markedly reduced width, whilst retaining the nominal coverage probability. Specifically, we consider the possibility of using methods based on generalised heterogeneity statistics with unequal tail probabilities, where the tail probability used to compute the upper bound is greater than 2.5 %. This idea is assessed using four real examples and a variety of simulation studies. Supporting analytical results are also obtained. Results Our results provide evidence that using unequal tail probabilities can result in shorter 95 % confidence intervals for the between-study variance. We also show some further results for a real example that illustrates how shorter confidence intervals for the between-study variance can be useful when performing sensitivity analyses for the average effect, which is usually the parameter of primary interest. Conclusions We conclude that using unequal tail probabilities when computing 95 % confidence intervals for the between-study variance, when using methods based on generalised heterogeneity statistics, can result in shorter confidence intervals. We suggest that those who find the case for using unequal tail probabilities convincing should use the ‘1–4 % split’, where greater tail probability is allocated to the upper confidence bound. The ‘width-optimal’ interval that we present deserves further investigation.http://link.springer.com/article/10.1186/s12874-016-0219-yConfidence interval widthQuadratic formsStatistical conventions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dan Jackson Jack Bowden |
spellingShingle |
Dan Jackson Jack Bowden Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? BMC Medical Research Methodology Confidence interval width Quadratic forms Statistical conventions |
author_facet |
Dan Jackson Jack Bowden |
author_sort |
Dan Jackson |
title |
Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? |
title_short |
Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? |
title_full |
Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? |
title_fullStr |
Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? |
title_full_unstemmed |
Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? |
title_sort |
confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? |
publisher |
BMC |
series |
BMC Medical Research Methodology |
issn |
1471-2288 |
publishDate |
2016-09-01 |
description |
Abstract Background Confidence intervals for the between study variance are useful in random-effects meta-analyses because they quantify the uncertainty in the corresponding point estimates. Methods for calculating these confidence intervals have been developed that are based on inverting hypothesis tests using generalised heterogeneity statistics. Whilst, under the random effects model, these new methods furnish confidence intervals with the correct coverage, the resulting intervals are usually very wide, making them uninformative. Methods We discuss a simple strategy for obtaining 95 % confidence intervals for the between-study variance with a markedly reduced width, whilst retaining the nominal coverage probability. Specifically, we consider the possibility of using methods based on generalised heterogeneity statistics with unequal tail probabilities, where the tail probability used to compute the upper bound is greater than 2.5 %. This idea is assessed using four real examples and a variety of simulation studies. Supporting analytical results are also obtained. Results Our results provide evidence that using unequal tail probabilities can result in shorter 95 % confidence intervals for the between-study variance. We also show some further results for a real example that illustrates how shorter confidence intervals for the between-study variance can be useful when performing sensitivity analyses for the average effect, which is usually the parameter of primary interest. Conclusions We conclude that using unequal tail probabilities when computing 95 % confidence intervals for the between-study variance, when using methods based on generalised heterogeneity statistics, can result in shorter confidence intervals. We suggest that those who find the case for using unequal tail probabilities convincing should use the ‘1–4 % split’, where greater tail probability is allocated to the upper confidence bound. The ‘width-optimal’ interval that we present deserves further investigation. |
topic |
Confidence interval width Quadratic forms Statistical conventions |
url |
http://link.springer.com/article/10.1186/s12874-016-0219-y |
work_keys_str_mv |
AT danjackson confidenceintervalsforthebetweenstudyvarianceinrandomeffectsmetaanalysisusinggeneralisedheterogeneitystatisticsshouldweuseunequaltails AT jackbowden confidenceintervalsforthebetweenstudyvarianceinrandomeffectsmetaanalysisusinggeneralisedheterogeneitystatisticsshouldweuseunequaltails |
_version_ |
1725462434888548352 |