Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)

Abstract This study has quantified basic wood density and various types of wood shrinkage in relation to initial spacing (or initial planting density) and tree growth based on a 48-year-old black spruce (Picea mariana) spacing trial in eastern Canada. A total of 139 sample trees were collected from...

Full description

Bibliographic Details
Main Authors: Shu Yin Zhang, Haiqing Ren, Zehui Jiang
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of Wood Science
Subjects:
Online Access:https://doi.org/10.1186/s10086-021-01965-9
id doaj-e3e08880cc224c78aaed9989efe18297
record_format Article
spelling doaj-e3e08880cc224c78aaed9989efe182972021-04-18T11:30:30ZengSpringerOpenJournal of Wood Science1435-02111611-46632021-04-0167111010.1186/s10086-021-01965-9Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)Shu Yin Zhang0Haiqing Ren1Zehui Jiang2International Centre for Bamboo and RattanChinese Academy of ForestryInternational Centre for Bamboo and RattanAbstract This study has quantified basic wood density and various types of wood shrinkage in relation to initial spacing (or initial planting density) and tree growth based on a 48-year-old black spruce (Picea mariana) spacing trial in eastern Canada. A total of 139 sample trees were collected from four initial spacings (3086, 2500, 2066, 1372 trees/ha) for this study. Analyses of variance (ANOVA) show that initial spacing is the most important parameter affecting wood density significantly, followed by tree diameter at breast height (DBH) class. With increasing spacing, wood density, radial and volumetric shrinkage tend to decrease, whereas longitudinal shrinkage tends to increase gradually. The largest spacing has the lowest wood density, the smallest transverse shrinkage and the largest longitudinal shrinkage. Path analysis indicates that wood density is the most important parameter affecting transverse shrinkage, followed by the distance from the pith. Furthermore, much of the variation of the transverse shrinkage with wood density may be due to the initial spacing and tree DBH class. Path analysis also reveals that longitudinal shrinkage is mainly related to log height and tree DBH class. With increasing log height, longitudinal shrinkage tends to increase, and transverse shrinkage tends to decrease. With increasing DBH class, the trees tend to have an increasing longitudinal shrinkage and a decreasing transverse shrinkage. Overall, this study suggests that a large increase in the initial spacing (e.g., 1372 trees/ha) might lead to a significant reduction in both wood density and transverse shrinkage, and a significant increase in longitudinal shrinkage in black spruce.https://doi.org/10.1186/s10086-021-01965-9Black spruceBasic wood densityWood shrinkageInitial stand densityTree growthLog height
collection DOAJ
language English
format Article
sources DOAJ
author Shu Yin Zhang
Haiqing Ren
Zehui Jiang
spellingShingle Shu Yin Zhang
Haiqing Ren
Zehui Jiang
Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)
Journal of Wood Science
Black spruce
Basic wood density
Wood shrinkage
Initial stand density
Tree growth
Log height
author_facet Shu Yin Zhang
Haiqing Ren
Zehui Jiang
author_sort Shu Yin Zhang
title Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)
title_short Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)
title_full Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)
title_fullStr Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)
title_full_unstemmed Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana)
title_sort wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (picea mariana)
publisher SpringerOpen
series Journal of Wood Science
issn 1435-0211
1611-4663
publishDate 2021-04-01
description Abstract This study has quantified basic wood density and various types of wood shrinkage in relation to initial spacing (or initial planting density) and tree growth based on a 48-year-old black spruce (Picea mariana) spacing trial in eastern Canada. A total of 139 sample trees were collected from four initial spacings (3086, 2500, 2066, 1372 trees/ha) for this study. Analyses of variance (ANOVA) show that initial spacing is the most important parameter affecting wood density significantly, followed by tree diameter at breast height (DBH) class. With increasing spacing, wood density, radial and volumetric shrinkage tend to decrease, whereas longitudinal shrinkage tends to increase gradually. The largest spacing has the lowest wood density, the smallest transverse shrinkage and the largest longitudinal shrinkage. Path analysis indicates that wood density is the most important parameter affecting transverse shrinkage, followed by the distance from the pith. Furthermore, much of the variation of the transverse shrinkage with wood density may be due to the initial spacing and tree DBH class. Path analysis also reveals that longitudinal shrinkage is mainly related to log height and tree DBH class. With increasing log height, longitudinal shrinkage tends to increase, and transverse shrinkage tends to decrease. With increasing DBH class, the trees tend to have an increasing longitudinal shrinkage and a decreasing transverse shrinkage. Overall, this study suggests that a large increase in the initial spacing (e.g., 1372 trees/ha) might lead to a significant reduction in both wood density and transverse shrinkage, and a significant increase in longitudinal shrinkage in black spruce.
topic Black spruce
Basic wood density
Wood shrinkage
Initial stand density
Tree growth
Log height
url https://doi.org/10.1186/s10086-021-01965-9
work_keys_str_mv AT shuyinzhang wooddensityandwoodshrinkageinrelationtoinitialspacingandtreegrowthinblacksprucepiceamariana
AT haiqingren wooddensityandwoodshrinkageinrelationtoinitialspacingandtreegrowthinblacksprucepiceamariana
AT zehuijiang wooddensityandwoodshrinkageinrelationtoinitialspacingandtreegrowthinblacksprucepiceamariana
_version_ 1721522329654132736