Visual Map Shifts based on Whisker-Guided Cues in the Young Mouse Visual Cortex

Mice navigate nearby space using their vision and whiskers, and young mice learn to integrate these heterogeneous inputs in perceptual space. We found that cortical responses were depressed in the primary visual cortex of young mice after wearing a monocular prism. This depression was uniformly obs...

Full description

Bibliographic Details
Main Authors: Kohei Yoshitake, Hiroaki Tsukano, Manavu Tohmi, Seiji Komagata, Ryuichi Hishida, Takeshi Yagi, Katsuei Shibuki
Format: Article
Language:English
Published: Elsevier 2013-12-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124713006554
Description
Summary:Mice navigate nearby space using their vision and whiskers, and young mice learn to integrate these heterogeneous inputs in perceptual space. We found that cortical responses were depressed in the primary visual cortex of young mice after wearing a monocular prism. This depression was uniformly observed in the primary visual cortex and was eliminated by whisker trimming or lesions in the posterior parietal cortex. Compensatory visual map shifts of responses elicited via the eye that had worn the prism were also observed. As a result, cortical responses elicited via each eye were clearly separated when a visual stimulus was placed in front of the mice. A comparison of response areas before and after prism wearing indicated that the map shifts were produced by depression with spatial eccentricity. Visual map shifts based on whisker-guided cues may serve as a model for investigating the cellular and molecular mechanisms underlying higher sensory integration in the mammalian brain.
ISSN:2211-1247