On the dynamics aspects for the plane motion of a particle under the action of potential forces in the presence of a magnetic field

This article deals with the general motion of a particle moving in the Euclidean plane under the influence of a conservative potential force in the presence of a magnetic field perpendicular to the plane of the motion. We introduce the conditions for which this motion is not algebraically integrable...

Full description

Bibliographic Details
Main Authors: C. Mnasri, A.A. Elmandouh
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379718302262
Description
Summary:This article deals with the general motion of a particle moving in the Euclidean plane under the influence of a conservative potential force in the presence of a magnetic field perpendicular to the plane of the motion. We introduce the conditions for which this motion is not algebraically integrable by using Kowalevski’s exponents. We present the equilibrium positions and study their stability and moreover, we clarify that the existence of the magnetic field acts as a stabilizer for maximum unstable equilibrium points for the effective potential. We employ Lyapunov theorem to construct the periodic solutions near the equilibrium points. The allowed regions of motion are specified and illustrated graphically. Keywords: Non-integrability, Stability, Periodic solutions
ISSN:2211-3797