Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors

ContextPheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet.Obj...

Full description

Bibliographic Details
Main Authors: Juliane März, Max Kurlbaum, Oisin Roche-Lancaster, Timo Deutschbein, Mirko Peitzsch, Cornelia Prehn, Dirk Weismann, Mercedes Robledo, Jerzy Adamski, Martin Fassnacht, Meik Kunz, Matthias Kroiss
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-09-01
Series:Frontiers in Endocrinology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fendo.2021.722656/full
id doaj-e39dfe42b66b4b66a1834875d69cf9dc
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Juliane März
Max Kurlbaum
Max Kurlbaum
Oisin Roche-Lancaster
Oisin Roche-Lancaster
Oisin Roche-Lancaster
Timo Deutschbein
Timo Deutschbein
Mirko Peitzsch
Cornelia Prehn
Dirk Weismann
Mercedes Robledo
Mercedes Robledo
Jerzy Adamski
Jerzy Adamski
Jerzy Adamski
Martin Fassnacht
Martin Fassnacht
Martin Fassnacht
Meik Kunz
Meik Kunz
Matthias Kroiss
Matthias Kroiss
Matthias Kroiss
spellingShingle Juliane März
Max Kurlbaum
Max Kurlbaum
Oisin Roche-Lancaster
Oisin Roche-Lancaster
Oisin Roche-Lancaster
Timo Deutschbein
Timo Deutschbein
Mirko Peitzsch
Cornelia Prehn
Dirk Weismann
Mercedes Robledo
Mercedes Robledo
Jerzy Adamski
Jerzy Adamski
Jerzy Adamski
Martin Fassnacht
Martin Fassnacht
Martin Fassnacht
Meik Kunz
Meik Kunz
Matthias Kroiss
Matthias Kroiss
Matthias Kroiss
Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors
Frontiers in Endocrinology
adrenal
pheochromocytoma
paraganglioma
targeted metabolomics
mass spectronomy
catecholamines
author_facet Juliane März
Max Kurlbaum
Max Kurlbaum
Oisin Roche-Lancaster
Oisin Roche-Lancaster
Oisin Roche-Lancaster
Timo Deutschbein
Timo Deutschbein
Mirko Peitzsch
Cornelia Prehn
Dirk Weismann
Mercedes Robledo
Mercedes Robledo
Jerzy Adamski
Jerzy Adamski
Jerzy Adamski
Martin Fassnacht
Martin Fassnacht
Martin Fassnacht
Meik Kunz
Meik Kunz
Matthias Kroiss
Matthias Kroiss
Matthias Kroiss
author_sort Juliane März
title Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors
title_short Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors
title_full Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors
title_fullStr Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors
title_full_unstemmed Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing Tumors
title_sort plasma metabolome profiling for the diagnosis of catecholamine producing tumors
publisher Frontiers Media S.A.
series Frontiers in Endocrinology
issn 1664-2392
publishDate 2021-09-01
description ContextPheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet.ObjectiveEvaluation of quantitative metabolomics as a diagnostic tool for PPGL.DesignTargeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study.PatientsProspectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded.ResultsAmong 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines.By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling.ConclusionsThe diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.
topic adrenal
pheochromocytoma
paraganglioma
targeted metabolomics
mass spectronomy
catecholamines
url https://www.frontiersin.org/articles/10.3389/fendo.2021.722656/full
work_keys_str_mv AT julianemarz plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT maxkurlbaum plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT maxkurlbaum plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT oisinrochelancaster plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT oisinrochelancaster plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT oisinrochelancaster plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT timodeutschbein plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT timodeutschbein plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT mirkopeitzsch plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT corneliaprehn plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT dirkweismann plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT mercedesrobledo plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT mercedesrobledo plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT jerzyadamski plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT jerzyadamski plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT jerzyadamski plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT martinfassnacht plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT martinfassnacht plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT martinfassnacht plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT meikkunz plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT meikkunz plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT matthiaskroiss plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT matthiaskroiss plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
AT matthiaskroiss plasmametabolomeprofilingforthediagnosisofcatecholamineproducingtumors
_version_ 1717764743902527488
spelling doaj-e39dfe42b66b4b66a1834875d69cf9dc2021-09-07T06:27:59ZengFrontiers Media S.A.Frontiers in Endocrinology1664-23922021-09-011210.3389/fendo.2021.722656722656Plasma Metabolome Profiling for the Diagnosis of Catecholamine Producing TumorsJuliane März0Max Kurlbaum1Max Kurlbaum2Oisin Roche-Lancaster3Oisin Roche-Lancaster4Oisin Roche-Lancaster5Timo Deutschbein6Timo Deutschbein7Mirko Peitzsch8Cornelia Prehn9Dirk Weismann10Mercedes Robledo11Mercedes Robledo12Jerzy Adamski13Jerzy Adamski14Jerzy Adamski15Martin Fassnacht16Martin Fassnacht17Martin Fassnacht18Meik Kunz19Meik Kunz20Matthias Kroiss21Matthias Kroiss22Matthias Kroiss23Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, GermanyDepartment of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, GermanyCore Unit Clinical Mass Spectrometry, University Hospital, Würzburg, GermanyChair of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, GermanyDepartment of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, GermanyComprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), Erlangen, GermanyDepartment of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, GermanyMedicover Oldenburg Medizinisches Versorgungszentrum (MVZ), Oldenburg, GermanyInstitute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität (TU) Dresden, Dresden, GermanyMetabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, GermanyDepartment of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, GermanyHereditary Endocrine Cancer Group, Spanish National Cancer Research Center, Madrid, Spain0Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain1Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany2Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore3Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, SloveniaDepartment of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, GermanyCore Unit Clinical Mass Spectrometry, University Hospital, Würzburg, Germany4Cancer Center Mainfranken, University of Würzburg, Würzburg, GermanyChair of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany5Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, GermanyDepartment of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, GermanyCore Unit Clinical Mass Spectrometry, University Hospital, Würzburg, Germany6Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, GermanyContextPheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet.ObjectiveEvaluation of quantitative metabolomics as a diagnostic tool for PPGL.DesignTargeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study.PatientsProspectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded.ResultsAmong 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines.By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling.ConclusionsThe diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.https://www.frontiersin.org/articles/10.3389/fendo.2021.722656/fulladrenalpheochromocytomaparagangliomatargeted metabolomicsmass spectronomycatecholamines