Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective
In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2017-12-01
|
Series: | Frontiers in Human Neuroscience |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fnhum.2017.00622/full |
Summary: | In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials. |
---|---|
ISSN: | 1662-5161 |