Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations

For a molecular graph &#x0393;, the general sum-connectivity index is defined as &#x03C7;<sub>&#x03B2;</sub>(&#x0393;) = <b>&#x03A3;</b><sub>vw&#x2208;E(&#x0393;)</sub>[d<sub>&#x0393;</sub>(v) + d<sub>&#x0393;&...

Full description

Bibliographic Details
Main Authors: Maqsood Ahmad, Muhammad Saeed, Muhammad Javaid, Muhammad Hussain
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8897501/
id doaj-e38c35b0eccd4a49b6431fc5bed651d8
record_format Article
spelling doaj-e38c35b0eccd4a49b6431fc5bed651d82021-03-30T00:38:10ZengIEEEIEEE Access2169-35362019-01-01716729016729910.1109/ACCESS.2019.29533388897501Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-OperationsMaqsood Ahmad0Muhammad Saeed1https://orcid.org/0000-0002-7284-6908Muhammad Javaid2Muhammad Hussain3Department of Mathematics, School of Science, University of Management and Technology, Lahore, PakistanDepartment of Mathematics, School of Science, University of Management and Technology, Lahore, PakistanDepartment of Mathematics, School of Science, University of Management and Technology, Lahore, PakistanDepartment of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, PakistanFor a molecular graph &#x0393;, the general sum-connectivity index is defined as &#x03C7;<sub>&#x03B2;</sub>(&#x0393;) = <b>&#x03A3;</b><sub>vw&#x2208;E(&#x0393;)</sub>[d<sub>&#x0393;</sub>(v) + d<sub>&#x0393;</sub>(w)]<sup>&#x03B2;</sup>, where &#x03B2; &#x2208; R and d<sub>&#x0393;</sub>(v) denotes the degree of the vertex v in the molecular graph &#x0393;. The problem of finding best possible upper and lower bound for certain topological index is of fundamental nature in extremal graph theory. Akhtar and Imran [J. Inequal. Appl. (2016) 241] obtained the sharp bounds of general sum-connectivity index for four graph operations (F-sum graphs) introduced by Eliasi and Taeri [Discrete Appl. Math. 157: 794-803, 2009)]. In this paper, for &#x03B2; &#x2208; N, we figured out and improved the sharp bounds of the general sum-connectivity index for F-sum graphs, where F &#x2208; {R, Q, T}. Several examples are presented to elaborate and compare the results of improved bounds with existing sharp bounds. In addition, we obtained exact formula of general sum-connectivity index for F-sum graphs, when F = S.https://ieeexplore.ieee.org/document/8897501/Molecular graphstopological indicesCartesian producttotal graph<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F</italic>-sum graphs
collection DOAJ
language English
format Article
sources DOAJ
author Maqsood Ahmad
Muhammad Saeed
Muhammad Javaid
Muhammad Hussain
spellingShingle Maqsood Ahmad
Muhammad Saeed
Muhammad Javaid
Muhammad Hussain
Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations
IEEE Access
Molecular graphs
topological indices
Cartesian product
total graph
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F</italic>-sum graphs
author_facet Maqsood Ahmad
Muhammad Saeed
Muhammad Javaid
Muhammad Hussain
author_sort Maqsood Ahmad
title Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations
title_short Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations
title_full Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations
title_fullStr Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations
title_full_unstemmed Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations
title_sort exact formula and improved bounds for general sum-connectivity index of graph-operations
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2019-01-01
description For a molecular graph &#x0393;, the general sum-connectivity index is defined as &#x03C7;<sub>&#x03B2;</sub>(&#x0393;) = <b>&#x03A3;</b><sub>vw&#x2208;E(&#x0393;)</sub>[d<sub>&#x0393;</sub>(v) + d<sub>&#x0393;</sub>(w)]<sup>&#x03B2;</sup>, where &#x03B2; &#x2208; R and d<sub>&#x0393;</sub>(v) denotes the degree of the vertex v in the molecular graph &#x0393;. The problem of finding best possible upper and lower bound for certain topological index is of fundamental nature in extremal graph theory. Akhtar and Imran [J. Inequal. Appl. (2016) 241] obtained the sharp bounds of general sum-connectivity index for four graph operations (F-sum graphs) introduced by Eliasi and Taeri [Discrete Appl. Math. 157: 794-803, 2009)]. In this paper, for &#x03B2; &#x2208; N, we figured out and improved the sharp bounds of the general sum-connectivity index for F-sum graphs, where F &#x2208; {R, Q, T}. Several examples are presented to elaborate and compare the results of improved bounds with existing sharp bounds. In addition, we obtained exact formula of general sum-connectivity index for F-sum graphs, when F = S.
topic Molecular graphs
topological indices
Cartesian product
total graph
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">F</italic>-sum graphs
url https://ieeexplore.ieee.org/document/8897501/
work_keys_str_mv AT maqsoodahmad exactformulaandimprovedboundsforgeneralsumconnectivityindexofgraphoperations
AT muhammadsaeed exactformulaandimprovedboundsforgeneralsumconnectivityindexofgraphoperations
AT muhammadjavaid exactformulaandimprovedboundsforgeneralsumconnectivityindexofgraphoperations
AT muhammadhussain exactformulaandimprovedboundsforgeneralsumconnectivityindexofgraphoperations
_version_ 1724188073887006720