Summary: | This paper presents a complete methodology, together with its implementation as a web application, for monitoring smart buildings. The approach uses unfold-Principal Component Analysis (unfold-PCA) as a batch projection method and two statistics, Hotelling’s T-squared (<i>T</i><sup>2</sup>) and the squared prediction error (<i>SPE</i>), for alarm generation resulting in two simple control charts independently on the number of variables involved. The method consists of modelling the normal operating conditions of a building (entire building, room or subsystem) with latent variables described expressing the principal components. Thus, the method allows detecting faults and misbehaviour as a deviation of previously mentioned statistics from their statistical thresholds. Once a fault or misbehaviour is detected, the isolation of sensors that mostly contribute to such detection is proposed as a first step for diagnosis. The methodology has been implemented under a SaaS (software as a service) approach to be offered to multiple buildings as an on-line application for facility managers. The application is general enough to be used for monitoring complete buildings, or parts of them, using on-line data. A complete example of use for monitoring the performance of the air handling unit of a lecture theatre is presented as demonstrative example and results are discussed
|