Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NO
Aim. To study “patterns” and connections of signaling pathways derived from the rat arterial pulse waveform (APW) under the condition of transient NO increase. Methods and Results. The right jugular vein of anesthetized Wistar rats was cannulated for administration of NO donor S-nitrosoglutathione....
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2020/6578213 |
id |
doaj-e362223d63274ddfa5ef3a44b9536972 |
---|---|
record_format |
Article |
spelling |
doaj-e362223d63274ddfa5ef3a44b95369722020-11-25T02:36:38ZengHindawi LimitedBioMed Research International2314-61332314-61412020-01-01202010.1155/2020/65782136578213Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NOAnton Misak0Lucia Kurakova1Andrea Berenyiova2Lenka Tomasova3Marian Grman4Sona Cacanyiova5Karol Ondrias6Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, SlovakiaInstitute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, SlovakiaInstitute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, SlovakiaInstitute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, SlovakiaInstitute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, SlovakiaInstitute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, SlovakiaInstitute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, SlovakiaAim. To study “patterns” and connections of signaling pathways derived from the rat arterial pulse waveform (APW) under the condition of transient NO increase. Methods and Results. The right jugular vein of anesthetized Wistar rats was cannulated for administration of NO donor S-nitrosoglutathione. The left carotid artery was cannulated to detect APW. From rat APW, 35 hemodynamic parameters (HPs) and several their crossrelationships were evaluated. We introduced a new methodology to study “patterns” and connections of different signaling pathways, which are suggested from hysteresis and nonhysteresis crossrelationships of 35 rat HPs. Here, we show parallel time-dependent patterns of 35 HPs and some of their crossrelationships under the condition of transient increase of NO bioavailability by administration of S-nitrosoglutathione. Approximate nonhysteresis relationships were observed between systolic blood pressure and at least 11 HPs suggesting that these HPs, i.e., their signaling pathways, responding to NO concentration, are directly connected. Hysteresis relationships were observed between systolic blood pressure and at least 14 HPs suggesting that the signaling pathways of these HPs are indirectly connected. Totally, from the crossrelationships of 35 HPs, one can obtain 595 “patterns” and indication of direct or indirect connections between the signaling pathways. Conclusion. We described the procedure leading virtually to 595 relationships, from which “patterns” for transient NO increase and direct or indirect connections of signaling pathways can be suggested. From a clinical perspective, this approach may be used in animal models and in humans to create a data bank of patterns of crossrelationships of HPs for different cardiovascular conditions. By comparison with unknown patterns of studied APW with the data bank patterns, it would be possible to determine cardiovascular conditions of the studied subject from the recorded arterial blood pressure. Additionally, it can help to find molecular mechanism of particular (patho-) physiological conditions or drug action and may have predictive or diagnostic value.http://dx.doi.org/10.1155/2020/6578213 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Anton Misak Lucia Kurakova Andrea Berenyiova Lenka Tomasova Marian Grman Sona Cacanyiova Karol Ondrias |
spellingShingle |
Anton Misak Lucia Kurakova Andrea Berenyiova Lenka Tomasova Marian Grman Sona Cacanyiova Karol Ondrias Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NO BioMed Research International |
author_facet |
Anton Misak Lucia Kurakova Andrea Berenyiova Lenka Tomasova Marian Grman Sona Cacanyiova Karol Ondrias |
author_sort |
Anton Misak |
title |
Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NO |
title_short |
Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NO |
title_full |
Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NO |
title_fullStr |
Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NO |
title_full_unstemmed |
Patterns and Direct/Indirect Signaling Pathways in Cardiovascular System in the Condition of Transient Increase of NO |
title_sort |
patterns and direct/indirect signaling pathways in cardiovascular system in the condition of transient increase of no |
publisher |
Hindawi Limited |
series |
BioMed Research International |
issn |
2314-6133 2314-6141 |
publishDate |
2020-01-01 |
description |
Aim. To study “patterns” and connections of signaling pathways derived from the rat arterial pulse waveform (APW) under the condition of transient NO increase. Methods and Results. The right jugular vein of anesthetized Wistar rats was cannulated for administration of NO donor S-nitrosoglutathione. The left carotid artery was cannulated to detect APW. From rat APW, 35 hemodynamic parameters (HPs) and several their crossrelationships were evaluated. We introduced a new methodology to study “patterns” and connections of different signaling pathways, which are suggested from hysteresis and nonhysteresis crossrelationships of 35 rat HPs. Here, we show parallel time-dependent patterns of 35 HPs and some of their crossrelationships under the condition of transient increase of NO bioavailability by administration of S-nitrosoglutathione. Approximate nonhysteresis relationships were observed between systolic blood pressure and at least 11 HPs suggesting that these HPs, i.e., their signaling pathways, responding to NO concentration, are directly connected. Hysteresis relationships were observed between systolic blood pressure and at least 14 HPs suggesting that the signaling pathways of these HPs are indirectly connected. Totally, from the crossrelationships of 35 HPs, one can obtain 595 “patterns” and indication of direct or indirect connections between the signaling pathways. Conclusion. We described the procedure leading virtually to 595 relationships, from which “patterns” for transient NO increase and direct or indirect connections of signaling pathways can be suggested. From a clinical perspective, this approach may be used in animal models and in humans to create a data bank of patterns of crossrelationships of HPs for different cardiovascular conditions. By comparison with unknown patterns of studied APW with the data bank patterns, it would be possible to determine cardiovascular conditions of the studied subject from the recorded arterial blood pressure. Additionally, it can help to find molecular mechanism of particular (patho-) physiological conditions or drug action and may have predictive or diagnostic value. |
url |
http://dx.doi.org/10.1155/2020/6578213 |
work_keys_str_mv |
AT antonmisak patternsanddirectindirectsignalingpathwaysincardiovascularsystemintheconditionoftransientincreaseofno AT luciakurakova patternsanddirectindirectsignalingpathwaysincardiovascularsystemintheconditionoftransientincreaseofno AT andreaberenyiova patternsanddirectindirectsignalingpathwaysincardiovascularsystemintheconditionoftransientincreaseofno AT lenkatomasova patternsanddirectindirectsignalingpathwaysincardiovascularsystemintheconditionoftransientincreaseofno AT mariangrman patternsanddirectindirectsignalingpathwaysincardiovascularsystemintheconditionoftransientincreaseofno AT sonacacanyiova patternsanddirectindirectsignalingpathwaysincardiovascularsystemintheconditionoftransientincreaseofno AT karolondrias patternsanddirectindirectsignalingpathwaysincardiovascularsystemintheconditionoftransientincreaseofno |
_version_ |
1715436739613425664 |