Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation
In this article, some high-order time discrete schemes with an <inline-formula> <math display="inline"> <semantics> <msup> <mi>H</mi> <mn>1</mn> </msup> </semantics> </math> </inline-formula>-Galerkin mixed finite elem...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/2/187 |
id |
doaj-e35f88be1cc4490d81f3e9344f956471 |
---|---|
record_format |
Article |
spelling |
doaj-e35f88be1cc4490d81f3e9344f9564712020-11-25T02:03:23ZengMDPI AGMathematics2227-73902020-02-018218710.3390/math8020187math8020187Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion EquationYaxin Hou0Cao Wen1Hong Li2Yang Liu3Zhichao Fang4Yining Yang5School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaSchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaSchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaSchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaSchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaSchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, ChinaIn this article, some high-order time discrete schemes with an <inline-formula> <math display="inline"> <semantics> <msup> <mi>H</mi> <mn>1</mn> </msup> </semantics> </math> </inline-formula>-Galerkin mixed finite element (MFE) method are studied to numerically solve a nonlinear distributed-order sub-diffusion model. Among the considered techniques, the interpolation approximation combined with second-order <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula> schemes in time is used to approximate the distributed order derivative. The stability and convergence of the scheme are discussed. Some numerical examples are provided to indicate the feasibility and efficiency of our schemes.https://www.mdpi.com/2227-7390/8/2/187second-order <i>σ</i> schemeinterpolation approximation<i>h</i><sup>1</sup>-galerkin mixed finite element methodnonlinear distributed-order sub-diffusion equationstabilityerror estimates |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yaxin Hou Cao Wen Hong Li Yang Liu Zhichao Fang Yining Yang |
spellingShingle |
Yaxin Hou Cao Wen Hong Li Yang Liu Zhichao Fang Yining Yang Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation Mathematics second-order <i>σ</i> scheme interpolation approximation <i>h</i><sup>1</sup>-galerkin mixed finite element method nonlinear distributed-order sub-diffusion equation stability error estimates |
author_facet |
Yaxin Hou Cao Wen Hong Li Yang Liu Zhichao Fang Yining Yang |
author_sort |
Yaxin Hou |
title |
Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation |
title_short |
Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation |
title_full |
Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation |
title_fullStr |
Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation |
title_full_unstemmed |
Some Second-Order <i>σ</i> Schemes Combined with an <i>H</i><sup>1</sup>-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation |
title_sort |
some second-order <i>σ</i> schemes combined with an <i>h</i><sup>1</sup>-galerkin mfe method for a nonlinear distributed-order sub-diffusion equation |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-02-01 |
description |
In this article, some high-order time discrete schemes with an <inline-formula> <math display="inline"> <semantics> <msup> <mi>H</mi> <mn>1</mn> </msup> </semantics> </math> </inline-formula>-Galerkin mixed finite element (MFE) method are studied to numerically solve a nonlinear distributed-order sub-diffusion model. Among the considered techniques, the interpolation approximation combined with second-order <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula> schemes in time is used to approximate the distributed order derivative. The stability and convergence of the scheme are discussed. Some numerical examples are provided to indicate the feasibility and efficiency of our schemes. |
topic |
second-order <i>σ</i> scheme interpolation approximation <i>h</i><sup>1</sup>-galerkin mixed finite element method nonlinear distributed-order sub-diffusion equation stability error estimates |
url |
https://www.mdpi.com/2227-7390/8/2/187 |
work_keys_str_mv |
AT yaxinhou somesecondorderisischemescombinedwithanihisup1supgalerkinmfemethodforanonlineardistributedordersubdiffusionequation AT caowen somesecondorderisischemescombinedwithanihisup1supgalerkinmfemethodforanonlineardistributedordersubdiffusionequation AT hongli somesecondorderisischemescombinedwithanihisup1supgalerkinmfemethodforanonlineardistributedordersubdiffusionequation AT yangliu somesecondorderisischemescombinedwithanihisup1supgalerkinmfemethodforanonlineardistributedordersubdiffusionequation AT zhichaofang somesecondorderisischemescombinedwithanihisup1supgalerkinmfemethodforanonlineardistributedordersubdiffusionequation AT yiningyang somesecondorderisischemescombinedwithanihisup1supgalerkinmfemethodforanonlineardistributedordersubdiffusionequation |
_version_ |
1724948658982486016 |