Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction

Lithium nickelate (LiNiO2) was synthesized using the lithium excess method, and then characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption. Finally, differential thermal and thermogravimetric analyses were performed in CO2 presence, at high temperatures. Resul...

Full description

Bibliographic Details
Main Authors: Daniela González-Varela, Brenda Alcántar-Vázquez, Heriberto Pfeiffer
Format: Article
Language:English
Published: Elsevier 2018-03-01
Series:Journal of Materiomics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S235284781730076X
id doaj-e35c3bcef37d4e7f9766e5ffa345e4f9
record_format Article
spelling doaj-e35c3bcef37d4e7f9766e5ffa345e4f92020-11-24T20:42:52ZengElsevierJournal of Materiomics2352-84782018-03-0141566110.1016/j.jmat.2017.12.004Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reactionDaniela González-Varela0Brenda Alcántar-Vázquez1Heriberto Pfeiffer2Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU, Del. Coyoacán, CP 04510, Ciudad de México, MexicoInstituto de Ingeniería, Coordinación de Ingeniería Ambiental, Universidad Nacional Autónoma de México, Circuito Escolar s/n, CU, Del. Coyoacán, CP 04510, Ciudad de México, MexicoLaboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU, Del. Coyoacán, CP 04510, Ciudad de México, MexicoLithium nickelate (LiNiO2) was synthesized using the lithium excess method, and then characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption. Finally, differential thermal and thermogravimetric analyses were performed in CO2 presence, at high temperatures. Results show that LiNiO2 is able to react with CO2 through a complex structural evolution process, where lithium atoms are released to produce Li2CO3, while some nickel atoms are rearranged on different Li1-xNi1+xO2 crystalline phases. LiNiO2-CO2 reaction kinetic parameters were determined assuming a first-order reaction, where kinetic constants tended to increase as a function of temperature. However, kinetic constant values did not follow a linear trend. This atypical behavior was attributed to LiNiO2 sintering and crystalline evolution performed as a function of temperature.http://www.sciencedirect.com/science/article/pii/S235284781730076XLithium nickelateCO2 chemisorptionLithium diffusion coefficientPhase transition
collection DOAJ
language English
format Article
sources DOAJ
author Daniela González-Varela
Brenda Alcántar-Vázquez
Heriberto Pfeiffer
spellingShingle Daniela González-Varela
Brenda Alcántar-Vázquez
Heriberto Pfeiffer
Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction
Journal of Materiomics
Lithium nickelate
CO2 chemisorption
Lithium diffusion coefficient
Phase transition
author_facet Daniela González-Varela
Brenda Alcántar-Vázquez
Heriberto Pfeiffer
author_sort Daniela González-Varela
title Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction
title_short Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction
title_full Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction
title_fullStr Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction
title_full_unstemmed Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction
title_sort structural evolution and reaction mechanism of lithium nickelate (linio2) during the carbonation reaction
publisher Elsevier
series Journal of Materiomics
issn 2352-8478
publishDate 2018-03-01
description Lithium nickelate (LiNiO2) was synthesized using the lithium excess method, and then characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption. Finally, differential thermal and thermogravimetric analyses were performed in CO2 presence, at high temperatures. Results show that LiNiO2 is able to react with CO2 through a complex structural evolution process, where lithium atoms are released to produce Li2CO3, while some nickel atoms are rearranged on different Li1-xNi1+xO2 crystalline phases. LiNiO2-CO2 reaction kinetic parameters were determined assuming a first-order reaction, where kinetic constants tended to increase as a function of temperature. However, kinetic constant values did not follow a linear trend. This atypical behavior was attributed to LiNiO2 sintering and crystalline evolution performed as a function of temperature.
topic Lithium nickelate
CO2 chemisorption
Lithium diffusion coefficient
Phase transition
url http://www.sciencedirect.com/science/article/pii/S235284781730076X
work_keys_str_mv AT danielagonzalezvarela structuralevolutionandreactionmechanismoflithiumnickelatelinio2duringthecarbonationreaction
AT brendaalcantarvazquez structuralevolutionandreactionmechanismoflithiumnickelatelinio2duringthecarbonationreaction
AT heribertopfeiffer structuralevolutionandreactionmechanismoflithiumnickelatelinio2duringthecarbonationreaction
_version_ 1716821444796612608