Properties of Soy Protein Isolate Biopolymer Film Modified by Graphene

This study applied a facile and green approach to synthesize a stable graphene aqueous dispersion, and the graphene aqueous dispersion was employed to modify the renewable, compatible and biodegradable soy-protein-isolated (SPI) films to enhance their thermal stability, mechanical properties and wat...

Full description

Bibliographic Details
Main Authors: Yufei Han, Kuang Li, Hui Chen, Jianzhang Li
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/9/8/312
Description
Summary:This study applied a facile and green approach to synthesize a stable graphene aqueous dispersion, and the graphene aqueous dispersion was employed to modify the renewable, compatible and biodegradable soy-protein-isolated (SPI) films to enhance their thermal stability, mechanical properties and water resistance. Atomic force microscopy (AFM) images confirmed the monolayer structure of graphene. The hydrogen bonds and π–π interactions between graphene and the SPI molecules were showed with the attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy, and X-ray diffraction (XRD). As expected, compared to the pure SPI film, the tensile strength (TS) of the film with 74% graphene increased by 27.22% and the total soluble matter (TSM) of the film with 93% graphene decreased by 11.30%.
ISSN:2073-4360