Transcriptome analysis of PK-15 cells in innate immune response to porcine deltacoronavirus infection.

Porcine deltacoronavirus (PDCoV) is a newly emerged swine enteropathogenic coronavirus affecting pigs of all ages and causing diarrhea problems. Research findings indicate that PDCoV has evolved strategies to escape innate immune response in host cells, but mechanism of PDCoV in innate immune modula...

Full description

Bibliographic Details
Main Authors: Shan Jiang, Fuqiang Li, Xiuli Li, Lili Wang, Li Zhang, Chao Lu, Li Zheng, Minghua Yan
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0223177
Description
Summary:Porcine deltacoronavirus (PDCoV) is a newly emerged swine enteropathogenic coronavirus affecting pigs of all ages and causing diarrhea problems. Research findings indicate that PDCoV has evolved strategies to escape innate immune response in host cells, but mechanism of PDCoV in innate immune modulation is not well understood. In this study, we report our findings on identifying the alterations of host cell innate immune response affected by PDCoV infection and exploring the gene expression profiles of PK-15 cells at 0, 24, and 36 h PDCoV post infection by RNA sequencing. A total of 3,762 and 560 differentially expressed genes (DEGs) were screened by comparison of uninfected PK-15 cells and infected PK-15 cells at 24 h post infection (hpi) (INF_24h versus NC), and also comparison of infected PK-15 cells between 24 and 36 hpi (INF_36h versus INF_24h), which included 156 and 23 porcine innate immune-related genes in the DEGs of INF_24h versus NC and INF_36h versus INF_24h, respectively. Gene Ontology function classification and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis were performed based on the DEGs that exhibited the same expression tendencies with most of the innate immune-associated genes among these PK-15 cell samples described above. The enrichment results indicated that extensive gene functions and signaling pathways including innate immune-associated functions and pathways were affected by PDCoV infection. Particularly, 4 of 5 innate immune signaling pathways, which were primarily affected by PDCoV, played important roles in I-IFN's antiviral function in innate immune response. Additionally, 16 of the host cell endogenous miRNAs were predicted as potential contributors to the modulation of innate immune response affected by PDCoV. Our research findings indicated that the innate immune-associated genes and signaling pathways in PK-15 cells could be modified by the infection of PDCoV, which provides a fundamental foundation for further studies to better understand the mechanism of PDCoV infections, so as to effectively control and prevent PDCoV-induced swine diarrheal disease outbreaks.
ISSN:1932-6203