Spatial Modelling to Inform Public Health Based on Health Surveys: Impact of Unsampled Areas at Lower Geographical Scale

Small area estimation is an important tool to provide area-specific estimates of population characteristics for governmental organizations in the context of education, public health and care. However, many demographic and health surveys are unrepresentative at a small geographical level, as often ar...

Full description

Bibliographic Details
Main Authors: Kevin Watjou, Christel Faes, Yannick Vandendijck
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:International Journal of Environmental Research and Public Health
Subjects:
Online Access:https://www.mdpi.com/1660-4601/17/3/786
Description
Summary:Small area estimation is an important tool to provide area-specific estimates of population characteristics for governmental organizations in the context of education, public health and care. However, many demographic and health surveys are unrepresentative at a small geographical level, as often areas at a lower level are not included in the sample due to financial or logistical reasons. In this paper, we investigated (1) the effect of these unsampled areas on a variety of design-based and hierarchical model-based estimates and (2) the benefits of using auxiliary information in the estimation process by means of an extensive simulation study. The results showed the benefits of hierarchical spatial smoothing models towards obtaining more reliable estimates for areas at the lowest geographical level in case a spatial trend is present in the data. Furthermore, the importance of auxiliary information was highlighted, especially for geographical areas that were not included in the sample. Methods are illustrated on the 2008 Mozambique Poverty and Social Impact Analysis survey, with interest in the district-specific prevalence of school attendance.
ISSN:1660-4601