Design and Optimization of a Lorentz-Force-Driven Planar Motor
This paper describes a short-stroke Lorentz-force-driven planar motor which can realize three-degree-of-freedom motions in high-precision positioning systems. It is an extended version of our previous publication. Based on the analytical model, the force expression concerning the main dimensional pa...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-12-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | http://www.mdpi.com/2076-3417/7/1/7 |
id |
doaj-e304937628cb49e08391ec9b6569251b |
---|---|
record_format |
Article |
spelling |
doaj-e304937628cb49e08391ec9b6569251b2020-11-24T22:01:11ZengMDPI AGApplied Sciences2076-34172016-12-0171710.3390/app7010007app7010007Design and Optimization of a Lorentz-Force-Driven Planar MotorHe Zhang0Baoquan Kou1Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, ChinaDepartment of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, ChinaThis paper describes a short-stroke Lorentz-force-driven planar motor which can realize three-degree-of-freedom motions in high-precision positioning systems. It is an extended version of our previous publication. Based on the analytical model, the force expression concerning the main dimensional parameters is derived. Compared with the finite element simulation, the optimization method in this paper is completely based on the mathematical model, which saves considerable time and has clear physical meaning. The effect of the main parameters on the motor performances such as force, force density, and acceleration are analyzed. This information can provide important design references for researchers. Finally, one prototype is tested. The testing values for the resistance and inductance of the square coil agree well with the analytical values. Additionally, the measured forces show a good agreement with the analytical force expression, and the force characteristics show a good symmetry in the x and y directions.http://www.mdpi.com/2076-3417/7/1/7planar motorelectromagnetic actuatorshort stroke |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
He Zhang Baoquan Kou |
spellingShingle |
He Zhang Baoquan Kou Design and Optimization of a Lorentz-Force-Driven Planar Motor Applied Sciences planar motor electromagnetic actuator short stroke |
author_facet |
He Zhang Baoquan Kou |
author_sort |
He Zhang |
title |
Design and Optimization of a Lorentz-Force-Driven Planar Motor |
title_short |
Design and Optimization of a Lorentz-Force-Driven Planar Motor |
title_full |
Design and Optimization of a Lorentz-Force-Driven Planar Motor |
title_fullStr |
Design and Optimization of a Lorentz-Force-Driven Planar Motor |
title_full_unstemmed |
Design and Optimization of a Lorentz-Force-Driven Planar Motor |
title_sort |
design and optimization of a lorentz-force-driven planar motor |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2016-12-01 |
description |
This paper describes a short-stroke Lorentz-force-driven planar motor which can realize three-degree-of-freedom motions in high-precision positioning systems. It is an extended version of our previous publication. Based on the analytical model, the force expression concerning the main dimensional parameters is derived. Compared with the finite element simulation, the optimization method in this paper is completely based on the mathematical model, which saves considerable time and has clear physical meaning. The effect of the main parameters on the motor performances such as force, force density, and acceleration are analyzed. This information can provide important design references for researchers. Finally, one prototype is tested. The testing values for the resistance and inductance of the square coil agree well with the analytical values. Additionally, the measured forces show a good agreement with the analytical force expression, and the force characteristics show a good symmetry in the x and y directions. |
topic |
planar motor electromagnetic actuator short stroke |
url |
http://www.mdpi.com/2076-3417/7/1/7 |
work_keys_str_mv |
AT hezhang designandoptimizationofalorentzforcedrivenplanarmotor AT baoquankou designandoptimizationofalorentzforcedrivenplanarmotor |
_version_ |
1725841173997682688 |