Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach Space

<p/> <p>We prove the weak and strong convergence of the implicit iterative process to a common fixed point of an asymptotically quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i2.gif"/></inline-formula>-nonexpansive mapping <inline-formula> &...

Full description

Bibliographic Details
Main Authors: Mukhamedov Farrukh, Saburov Mansoor
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/719631
id doaj-e2f931a8ef6441dd8d82d44bb6980d88
record_format Article
spelling doaj-e2f931a8ef6441dd8d82d44bb6980d882020-11-24T21:41:38ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122010-01-0120101719631Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach SpaceMukhamedov FarrukhSaburov Mansoor<p/> <p>We prove the weak and strong convergence of the implicit iterative process to a common fixed point of an asymptotically quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i2.gif"/></inline-formula>-nonexpansive mapping <inline-formula> <graphic file="1687-1812-2010-719631-i3.gif"/></inline-formula> and an asymptotically quasi-nonexpansive mapping <inline-formula> <graphic file="1687-1812-2010-719631-i4.gif"/></inline-formula>, defined on a nonempty closed convex subset of a Banach space.</p>http://www.fixedpointtheoryandapplications.com/content/2010/719631
collection DOAJ
language English
format Article
sources DOAJ
author Mukhamedov Farrukh
Saburov Mansoor
spellingShingle Mukhamedov Farrukh
Saburov Mansoor
Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach Space
Fixed Point Theory and Applications
author_facet Mukhamedov Farrukh
Saburov Mansoor
author_sort Mukhamedov Farrukh
title Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach Space
title_short Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach Space
title_full Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach Space
title_fullStr Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach Space
title_full_unstemmed Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-Nonexpansive Mapping in Banach Space
title_sort weak and strong convergence of an implicit iteration process for an asymptotically quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i1.gif"/></inline-formula>-nonexpansive mapping in banach space
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2010-01-01
description <p/> <p>We prove the weak and strong convergence of the implicit iterative process to a common fixed point of an asymptotically quasi-<inline-formula> <graphic file="1687-1812-2010-719631-i2.gif"/></inline-formula>-nonexpansive mapping <inline-formula> <graphic file="1687-1812-2010-719631-i3.gif"/></inline-formula> and an asymptotically quasi-nonexpansive mapping <inline-formula> <graphic file="1687-1812-2010-719631-i4.gif"/></inline-formula>, defined on a nonempty closed convex subset of a Banach space.</p>
url http://www.fixedpointtheoryandapplications.com/content/2010/719631
work_keys_str_mv AT mukhamedovfarrukh weakandstrongconvergenceofanimplicititerationprocessforanasymptoticallyquasiinlineformulagraphicfile168718122010719631i1gifinlineformulanonexpansivemappinginbanachspace
AT saburovmansoor weakandstrongconvergenceofanimplicititerationprocessforanasymptoticallyquasiinlineformulagraphicfile168718122010719631i1gifinlineformulanonexpansivemappinginbanachspace
_version_ 1716665658235682816