Deep Learning RetinaNet based Car Detection for Smart Transportation Network

ABSTRAK Deteksi objek yang merupakan salah satu bagian utama dari sistem Smart Transportasion Network (STN) diajukan pada penelitian ini. Penelitian ini menggunakan salah satu model STN yaitu Infrastructure-to-Vehicle (I2V), dimana sistem ini bekerja dengan mendeteksi kendaraan mobil menggunakan mo...

Full description

Bibliographic Details
Main Authors: IRMA AMELIA DEWI, LISA KRISTIANA, ARSYAD RAMADHAN DARLIS, REZA FADILAH DWIPUTRA
Format: Article
Language:Indonesian
Published: Teknik Elektro Institut Teknologi Nasional Bandung 2019-09-01
Series:Jurnal Elkomika
Subjects:
stn
vlc
i2v
Online Access:https://ejurnal.itenas.ac.id/index.php/elkomika/article/view/3014
id doaj-e2f8301504cc4336a5d4805b6d54f982
record_format Article
spelling doaj-e2f8301504cc4336a5d4805b6d54f9822020-11-25T02:21:24ZindTeknik Elektro Institut Teknologi Nasional BandungJurnal Elkomika2338-83232459-96382019-09-017310.26760/elkomika.v7i3.5701995Deep Learning RetinaNet based Car Detection for Smart Transportation NetworkIRMA AMELIA DEWI0LISA KRISTIANA1ARSYAD RAMADHAN DARLIS2REZA FADILAH DWIPUTRA3Informatika, Institut Teknologi Nasional BandungInformatika, Institut Teknologi Nasional BandungTeknik Elektro, Institut Teknologi Nasional BandungInformatika, Institut Teknologi Nasional BandungABSTRAK Deteksi objek yang merupakan salah satu bagian utama dari sistem Smart Transportasion Network (STN) diajukan pada penelitian ini. Penelitian ini menggunakan salah satu model STN yaitu Infrastructure-to-Vehicle (I2V), dimana sistem ini bekerja dengan mendeteksi kendaraan mobil menggunakan model arsitektur RetinaNet dengan backbone Resnet101 dan FPN (Feature Pyramid Network), kemudian hasil deteksi mentrigger VLC transmitter yang terpasang di lampu penerangan jalan mengirimkan sinyal informasi menuju VLC receiver yang dipasang di mobil. Pada tahap proses training, jumlah dataset mobil yang digunakan adalah sekitar 1600 image dan 400 validation image serta pengulangan proses sebanyak 100 epoch. Berdasarkan 50 kali pengujian pada image test, diperoleh nilai precision mencapai 86%, nilai recall mencapai 85% dan f1-score mencapai 84%. Kata kunci: Object detection, RetinaNet, Resnet101, STN, VLC, I2V   ABSTRACT Object detection is one of the main part in Smart Transportation Network (STN) system proposed in this research. This research used one of the STN models, namely Infrastructure-to-Vehicle (I2V), a system works by detecting car using RetinaNet architecture model with ResNet 101 and FPN (Feature Pyramid Network) as backbone, then the detection result triggers VLC transmitter set up on the street lighting to transmit information signal to the VLC receiver which set up in the car. At the training process stage, the number of car datasets is approximately 1600 images, 400 validation images and repetition of processes about 100 epochs. Based on the 50 times testing process on a image test, it is obtained 86% of a precision value, by reaching 85% of recall value, and 84% of f1-score. Keywords: Object detection, RetinaNet, Resnet101, STN, VLC, I2Vhttps://ejurnal.itenas.ac.id/index.php/elkomika/article/view/3014object detectionretinanetresnet101stnvlci2v
collection DOAJ
language Indonesian
format Article
sources DOAJ
author IRMA AMELIA DEWI
LISA KRISTIANA
ARSYAD RAMADHAN DARLIS
REZA FADILAH DWIPUTRA
spellingShingle IRMA AMELIA DEWI
LISA KRISTIANA
ARSYAD RAMADHAN DARLIS
REZA FADILAH DWIPUTRA
Deep Learning RetinaNet based Car Detection for Smart Transportation Network
Jurnal Elkomika
object detection
retinanet
resnet101
stn
vlc
i2v
author_facet IRMA AMELIA DEWI
LISA KRISTIANA
ARSYAD RAMADHAN DARLIS
REZA FADILAH DWIPUTRA
author_sort IRMA AMELIA DEWI
title Deep Learning RetinaNet based Car Detection for Smart Transportation Network
title_short Deep Learning RetinaNet based Car Detection for Smart Transportation Network
title_full Deep Learning RetinaNet based Car Detection for Smart Transportation Network
title_fullStr Deep Learning RetinaNet based Car Detection for Smart Transportation Network
title_full_unstemmed Deep Learning RetinaNet based Car Detection for Smart Transportation Network
title_sort deep learning retinanet based car detection for smart transportation network
publisher Teknik Elektro Institut Teknologi Nasional Bandung
series Jurnal Elkomika
issn 2338-8323
2459-9638
publishDate 2019-09-01
description ABSTRAK Deteksi objek yang merupakan salah satu bagian utama dari sistem Smart Transportasion Network (STN) diajukan pada penelitian ini. Penelitian ini menggunakan salah satu model STN yaitu Infrastructure-to-Vehicle (I2V), dimana sistem ini bekerja dengan mendeteksi kendaraan mobil menggunakan model arsitektur RetinaNet dengan backbone Resnet101 dan FPN (Feature Pyramid Network), kemudian hasil deteksi mentrigger VLC transmitter yang terpasang di lampu penerangan jalan mengirimkan sinyal informasi menuju VLC receiver yang dipasang di mobil. Pada tahap proses training, jumlah dataset mobil yang digunakan adalah sekitar 1600 image dan 400 validation image serta pengulangan proses sebanyak 100 epoch. Berdasarkan 50 kali pengujian pada image test, diperoleh nilai precision mencapai 86%, nilai recall mencapai 85% dan f1-score mencapai 84%. Kata kunci: Object detection, RetinaNet, Resnet101, STN, VLC, I2V   ABSTRACT Object detection is one of the main part in Smart Transportation Network (STN) system proposed in this research. This research used one of the STN models, namely Infrastructure-to-Vehicle (I2V), a system works by detecting car using RetinaNet architecture model with ResNet 101 and FPN (Feature Pyramid Network) as backbone, then the detection result triggers VLC transmitter set up on the street lighting to transmit information signal to the VLC receiver which set up in the car. At the training process stage, the number of car datasets is approximately 1600 images, 400 validation images and repetition of processes about 100 epochs. Based on the 50 times testing process on a image test, it is obtained 86% of a precision value, by reaching 85% of recall value, and 84% of f1-score. Keywords: Object detection, RetinaNet, Resnet101, STN, VLC, I2V
topic object detection
retinanet
resnet101
stn
vlc
i2v
url https://ejurnal.itenas.ac.id/index.php/elkomika/article/view/3014
work_keys_str_mv AT irmaameliadewi deeplearningretinanetbasedcardetectionforsmarttransportationnetwork
AT lisakristiana deeplearningretinanetbasedcardetectionforsmarttransportationnetwork
AT arsyadramadhandarlis deeplearningretinanetbasedcardetectionforsmarttransportationnetwork
AT rezafadilahdwiputra deeplearningretinanetbasedcardetectionforsmarttransportationnetwork
_version_ 1724866467048980480