Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis
<p>Abstract</p> <p>Background</p> <p>Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mappi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-07-01
|
Series: | BMC Medical Informatics and Decision Making |
Online Access: | http://www.biomedcentral.com/1472-6947/12/78 |
id |
doaj-e2daf01c1394424cb8b790d0521f4189 |
---|---|
record_format |
Article |
spelling |
doaj-e2daf01c1394424cb8b790d0521f41892020-11-25T00:15:13ZengBMCBMC Medical Informatics and Decision Making1472-69472012-07-011217810.1186/1472-6947-12-78Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosisTaboada MaríaMartínez DiegoPilo BelénJiménez-Escrig AdrianoRobinson Peter NSobrido María J<p>Abstract</p> <p>Background</p> <p>Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction.</p> <p>Methods</p> <p>Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies.</p> <p>Results</p> <p>A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption.</p> <p>Conclusions</p> <p>This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.</p> http://www.biomedcentral.com/1472-6947/12/78 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Taboada María Martínez Diego Pilo Belén Jiménez-Escrig Adriano Robinson Peter N Sobrido María J |
spellingShingle |
Taboada María Martínez Diego Pilo Belén Jiménez-Escrig Adriano Robinson Peter N Sobrido María J Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis BMC Medical Informatics and Decision Making |
author_facet |
Taboada María Martínez Diego Pilo Belén Jiménez-Escrig Adriano Robinson Peter N Sobrido María J |
author_sort |
Taboada María |
title |
Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis |
title_short |
Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis |
title_full |
Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis |
title_fullStr |
Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis |
title_full_unstemmed |
Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis |
title_sort |
querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis |
publisher |
BMC |
series |
BMC Medical Informatics and Decision Making |
issn |
1472-6947 |
publishDate |
2012-07-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction.</p> <p>Methods</p> <p>Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies.</p> <p>Results</p> <p>A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption.</p> <p>Conclusions</p> <p>This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.</p> |
url |
http://www.biomedcentral.com/1472-6947/12/78 |
work_keys_str_mv |
AT taboadamaria queryingphenotypegenotyperelationshipsonpatientdatasetsusingsemanticwebtechnologytheexampleofcerebrotendinousxanthomatosis AT martinezdiego queryingphenotypegenotyperelationshipsonpatientdatasetsusingsemanticwebtechnologytheexampleofcerebrotendinousxanthomatosis AT pilobelen queryingphenotypegenotyperelationshipsonpatientdatasetsusingsemanticwebtechnologytheexampleofcerebrotendinousxanthomatosis AT jimenezescrigadriano queryingphenotypegenotyperelationshipsonpatientdatasetsusingsemanticwebtechnologytheexampleofcerebrotendinousxanthomatosis AT robinsonpetern queryingphenotypegenotyperelationshipsonpatientdatasetsusingsemanticwebtechnologytheexampleofcerebrotendinousxanthomatosis AT sobridomariaj queryingphenotypegenotyperelationshipsonpatientdatasetsusingsemanticwebtechnologytheexampleofcerebrotendinousxanthomatosis |
_version_ |
1725387980634324992 |