Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions

Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer c...

Full description

Bibliographic Details
Main Authors: Nikola Milašinović, Zorica Knežević-Jugović, Nedeljko Milosavljević, Marija Lučić Škorić, Jovanka Filipović, Melina Kalagasidis Krušić
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2014/364930
Description
Summary:Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer composition, the matrix is enabled to protect the incorporated protein in the highly acidic environment of upper gastrointestinal tract and deliver it in the neutral or slightly basic region of the lower intestine. The protein/poly(NiPAAm-co-IA) hydrogels were synthetized by free radical crosslinking copolymerization and were characterized concerning their swelling capability, mechanical properties, and morphology. The pore structure and sizes up to 1.90 nm allowed good entrapment of lipase molecules. Model protein, lipase from Candida rugosa, was entrapped within hydrogels upon mild conditions that provided its protection from harmful environmental influences. The efficiency of the lipase entrapment reached 96.7%, and was dependent on the initial concentration of lipase solution. The swelling of the obtained hydrogels in simulated pH and temperature of gastrointestinal tract, the lipase entrapment efficiency, and its release profiles from hydrogels were investigated as well.
ISSN:2314-6133
2314-6141