Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase.
ADP-glucose pyrophosphorylase regulates the synthesis of glycogen in bacteria and of starch in plants. The enzyme from plants is mainly activated by 3-phosphoglycerate and is a heterotetramer comprising two small and two large subunits. Here, we found that two highly conserved residues are critical...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3691274?pdf=render |
id |
doaj-e2d4a8a5b015407da89ef46891f6d84e |
---|---|
record_format |
Article |
spelling |
doaj-e2d4a8a5b015407da89ef46891f6d84e2020-11-24T21:42:19ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0186e6682410.1371/journal.pone.0066824Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase.Carlos M FigueroaMisty L KuhnChristine A FalaschettiLigin SolamenKenneth W OlsenMiguel A BallicoraAlberto A IglesiasADP-glucose pyrophosphorylase regulates the synthesis of glycogen in bacteria and of starch in plants. The enzyme from plants is mainly activated by 3-phosphoglycerate and is a heterotetramer comprising two small and two large subunits. Here, we found that two highly conserved residues are critical for triggering the activation of the potato tuber ADP-glucose pyrophosphorylase, as shown by site-directed mutagenesis. Mutations in the small subunit, which bears the catalytic function in this potato tuber form, had a more dramatic effect on disrupting the allosteric activation than those introduced in the large subunit, which is mainly modulatory. Our results strongly agree with a model where the modified residues are located in loops responsible for triggering the allosteric activation signal for this enzyme, and the sensitivity to this activation correlates with the dynamics of these loops. In addition, previous biochemical data indicates that the triggering mechanism is widespread in the enzyme family, even though the activator and the quaternary structure are not conserved.http://europepmc.org/articles/PMC3691274?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Carlos M Figueroa Misty L Kuhn Christine A Falaschetti Ligin Solamen Kenneth W Olsen Miguel A Ballicora Alberto A Iglesias |
spellingShingle |
Carlos M Figueroa Misty L Kuhn Christine A Falaschetti Ligin Solamen Kenneth W Olsen Miguel A Ballicora Alberto A Iglesias Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase. PLoS ONE |
author_facet |
Carlos M Figueroa Misty L Kuhn Christine A Falaschetti Ligin Solamen Kenneth W Olsen Miguel A Ballicora Alberto A Iglesias |
author_sort |
Carlos M Figueroa |
title |
Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase. |
title_short |
Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase. |
title_full |
Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase. |
title_fullStr |
Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase. |
title_full_unstemmed |
Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase. |
title_sort |
unraveling the activation mechanism of the potato tuber adp-glucose pyrophosphorylase. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
ADP-glucose pyrophosphorylase regulates the synthesis of glycogen in bacteria and of starch in plants. The enzyme from plants is mainly activated by 3-phosphoglycerate and is a heterotetramer comprising two small and two large subunits. Here, we found that two highly conserved residues are critical for triggering the activation of the potato tuber ADP-glucose pyrophosphorylase, as shown by site-directed mutagenesis. Mutations in the small subunit, which bears the catalytic function in this potato tuber form, had a more dramatic effect on disrupting the allosteric activation than those introduced in the large subunit, which is mainly modulatory. Our results strongly agree with a model where the modified residues are located in loops responsible for triggering the allosteric activation signal for this enzyme, and the sensitivity to this activation correlates with the dynamics of these loops. In addition, previous biochemical data indicates that the triggering mechanism is widespread in the enzyme family, even though the activator and the quaternary structure are not conserved. |
url |
http://europepmc.org/articles/PMC3691274?pdf=render |
work_keys_str_mv |
AT carlosmfigueroa unravelingtheactivationmechanismofthepotatotuberadpglucosepyrophosphorylase AT mistylkuhn unravelingtheactivationmechanismofthepotatotuberadpglucosepyrophosphorylase AT christineafalaschetti unravelingtheactivationmechanismofthepotatotuberadpglucosepyrophosphorylase AT liginsolamen unravelingtheactivationmechanismofthepotatotuberadpglucosepyrophosphorylase AT kennethwolsen unravelingtheactivationmechanismofthepotatotuberadpglucosepyrophosphorylase AT miguelaballicora unravelingtheactivationmechanismofthepotatotuberadpglucosepyrophosphorylase AT albertoaiglesias unravelingtheactivationmechanismofthepotatotuberadpglucosepyrophosphorylase |
_version_ |
1725917660824207360 |