Numerical Radius and Operator Norm Inequalities

A general inequality involving powers of the numerical radius for sums and products of Hilbert space operators is given. This inequality generalizes several recent inequalities for the numerical radius, and includes that if A and B are operators on a complex Hilbert space H, then wr(A∗B)&...

Full description

Bibliographic Details
Main Authors: Khalid Shebrawi, Hussien Albadawi
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Journal of Inequalities and Applications
Online Access:http://dx.doi.org/10.1155/2009/492154
Description
Summary:A general inequality involving powers of the numerical radius for sums and products of Hilbert space operators is given. This inequality generalizes several recent inequalities for the numerical radius, and includes that if A and B are operators on a complex Hilbert space H, then wr(A∗B)≤(1/2)‖|A|2r+|B|2r‖ for r≥1. It is also shown that if Xi is normal (i=1,2,…,n), then ‖∑i=1nXi‖r≤nr−1‖∑i=1n|Xi|r‖. Related numerical radius and usual operator norm inequalities for sums and products of operators are also presented.
ISSN:1025-5834
1029-242X