Cosmic ray momentum diffusion in the presence of nonlinear Alfvén waves

The relation between the spatial diffusion coefficient along the magnetic field, <I>k</I><em>II</em>, and the momentum diffusion coefficient, D<em><I>p</I></em>, for relativistic cosmic ray particles is modelled using Monte...

Full description

Bibliographic Details
Main Authors: G. Michałek, M. Ostrowsky
Format: Article
Language:English
Published: Copernicus Publications 1996-01-01
Series:Nonlinear Processes in Geophysics
Online Access:http://www.nonlin-processes-geophys.net/3/66/1996/npg-3-66-1996.pdf
id doaj-e2c322eb1ae046ff9f47984748170591
record_format Article
spelling doaj-e2c322eb1ae046ff9f479847481705912020-11-25T00:23:41ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79461996-01-01316676Cosmic ray momentum diffusion in the presence of nonlinear Alfvén wavesG. MichałekM. OstrowskyThe relation between the spatial diffusion coefficient along the magnetic field, <I>k</I><em>II</em>, and the momentum diffusion coefficient, D<em><I>p</I></em>, for relativistic cosmic ray particles is modelled using Monte Carlo simulations. Wave fields with vanishing wave helicity and cross-helicity, constructed by superposing 'Alfv&eacute;n-like' waves are considered. As the result, particle trajectories in high amplitude wave fields and then - by averaging over these trajectories - the values of transport coefficients are derived. The modelling is performed at various wave amplitudes, from δ <i>B</i>/<i>B</i><em><sub>0</sub></em> = 0.15 to 2.0, and for a number of wave field types. At our small amplitudes approximately the quasi-linear theory (QLT) estimates for <I>k</I><sub><em>II</em> </sub> and D<I><em><sub>p</sub></em></I> are reproduced. However, with growing wave amplitude the simulated results show a small divergence from the QLT ones, with <I>k</I><sub><em>II</em> </sub>decreasing slower than theoretical prediction and the opposite being true for D<I><em><sub>p</sub></em></I>. The wave field form gives only a slight influence on the wave-particle interactions at large wave amplitudes δ <i>B</i>/<i>B</i><em><sub>0 </sub></em>~ 1. The parameter characterizing the relative efficiency of the second-order to the first-order acceleration at shock waves, D<I><em><sub>p</sub></em></I> <I>κ</I><sub><em>II</em> </sub> is given in the QLT approximation by the Skilling formula V<em><sup>2</sup><sub>A </sub></em>p<em><sup>2 </sup></em>/ 9. In simulations together with increasing δ <i>B</i> it increases above this scale in all the cases under our study. Consequences of the present results for the second-order Fermi acceleration at shock waves are briefly addressed.http://www.nonlin-processes-geophys.net/3/66/1996/npg-3-66-1996.pdf
collection DOAJ
language English
format Article
sources DOAJ
author G. Michałek
M. Ostrowsky
spellingShingle G. Michałek
M. Ostrowsky
Cosmic ray momentum diffusion in the presence of nonlinear Alfvén waves
Nonlinear Processes in Geophysics
author_facet G. Michałek
M. Ostrowsky
author_sort G. Michałek
title Cosmic ray momentum diffusion in the presence of nonlinear Alfvén waves
title_short Cosmic ray momentum diffusion in the presence of nonlinear Alfvén waves
title_full Cosmic ray momentum diffusion in the presence of nonlinear Alfvén waves
title_fullStr Cosmic ray momentum diffusion in the presence of nonlinear Alfvén waves
title_full_unstemmed Cosmic ray momentum diffusion in the presence of nonlinear Alfvén waves
title_sort cosmic ray momentum diffusion in the presence of nonlinear alfvén waves
publisher Copernicus Publications
series Nonlinear Processes in Geophysics
issn 1023-5809
1607-7946
publishDate 1996-01-01
description The relation between the spatial diffusion coefficient along the magnetic field, <I>k</I><em>II</em>, and the momentum diffusion coefficient, D<em><I>p</I></em>, for relativistic cosmic ray particles is modelled using Monte Carlo simulations. Wave fields with vanishing wave helicity and cross-helicity, constructed by superposing 'Alfv&eacute;n-like' waves are considered. As the result, particle trajectories in high amplitude wave fields and then - by averaging over these trajectories - the values of transport coefficients are derived. The modelling is performed at various wave amplitudes, from δ <i>B</i>/<i>B</i><em><sub>0</sub></em> = 0.15 to 2.0, and for a number of wave field types. At our small amplitudes approximately the quasi-linear theory (QLT) estimates for <I>k</I><sub><em>II</em> </sub> and D<I><em><sub>p</sub></em></I> are reproduced. However, with growing wave amplitude the simulated results show a small divergence from the QLT ones, with <I>k</I><sub><em>II</em> </sub>decreasing slower than theoretical prediction and the opposite being true for D<I><em><sub>p</sub></em></I>. The wave field form gives only a slight influence on the wave-particle interactions at large wave amplitudes δ <i>B</i>/<i>B</i><em><sub>0 </sub></em>~ 1. The parameter characterizing the relative efficiency of the second-order to the first-order acceleration at shock waves, D<I><em><sub>p</sub></em></I> <I>κ</I><sub><em>II</em> </sub> is given in the QLT approximation by the Skilling formula V<em><sup>2</sup><sub>A </sub></em>p<em><sup>2 </sup></em>/ 9. In simulations together with increasing δ <i>B</i> it increases above this scale in all the cases under our study. Consequences of the present results for the second-order Fermi acceleration at shock waves are briefly addressed.
url http://www.nonlin-processes-geophys.net/3/66/1996/npg-3-66-1996.pdf
work_keys_str_mv AT gmichałek cosmicraymomentumdiffusioninthepresenceofnonlinearalfvenwaves
AT mostrowsky cosmicraymomentumdiffusioninthepresenceofnonlinearalfvenwaves
_version_ 1725355556535795712