Investigating the Role of Vanadium-Dependent Haloperoxidase Enzymology in Microbial Secondary Metabolism and Chemical Ecology

ABSTRACT The chemical diversity of natural products is established by an elegant network of biosynthetic machinery and controlled by a suite of intracellular and environmental cues. Advances in genomics, transcriptomics, and metabolomics have provided useful insight to understand how organisms respo...

Full description

Bibliographic Details
Main Authors: Jackson T. Baumgartner, Shaun M. K. McKinnie
Format: Article
Language:English
Published: American Society for Microbiology 2021-08-01
Series:mSystems
Subjects:
Online Access:https://journals.asm.org/doi/10.1128/mSystems.00780-21
Description
Summary:ABSTRACT The chemical diversity of natural products is established by an elegant network of biosynthetic machinery and controlled by a suite of intracellular and environmental cues. Advances in genomics, transcriptomics, and metabolomics have provided useful insight to understand how organisms respond to abiotic and biotic factors to adjust their chemical output; this has permitted researchers to begin asking bigger-picture questions regarding the ecological significance of these molecules to the producing organism and its community. Our lab is motivated by understanding how select microbes construct and manipulate bioactive molecules by utilizing vanadium-dependent haloperoxidase (VHPO) enzymology. This commentary will give perspective into our efforts to understand the unique VHPO-catalyzed conversions which modulate the activities within two ecologically relevant natural product families. Through enhancing our knowledge of microbial natural product biosynthesis, we can understand how and why these bioactive molecules are created.
ISSN:2379-5077