A Strong Convergence Theorem under a New Shrinking Projection Method for Finite Families of Nonlinear Mappings in a Hilbert Space

In this paper, using a new shrinking projection method, we deal with the strong convergence for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points of a finite family of demimetric mappings and common zero points of a finite family of inverse strongly...

Full description

Bibliographic Details
Main Author: Wataru Takahashi
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/3/435
Description
Summary:In this paper, using a new shrinking projection method, we deal with the strong convergence for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points of a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Using this result, we get well-known and new strong convergence theorems in a Hilbert space.
ISSN:2227-7390