Uncertainties in the heliosheath ion temperatures

The Voyager plasma observations show that the physics of the heliosheath is rather complex and that the temperature derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on <i>κ</i> distributions inste...

Full description

Bibliographic Details
Main Authors: K. Scherer, H. J. Fahr, H. Fichtner, A. Sylla, J. D. Richardson, M. Lazar
Format: Article
Language:English
Published: Copernicus Publications 2018-01-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/36/37/2018/angeo-36-37-2018.pdf
id doaj-e29217444c2941ad8575e03c594e2af0
record_format Article
spelling doaj-e29217444c2941ad8575e03c594e2af02020-11-25T00:15:20ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762018-01-0136374610.5194/angeo-36-37-2018Uncertainties in the heliosheath ion temperaturesK. Scherer0K. Scherer1H. J. Fahr2H. Fichtner3H. Fichtner4A. Sylla5J. D. Richardson6M. Lazar7Institut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyResearch Department, Plasmas with Complex Interactions, Ruhr-Universität Bochum, GermanyArgelander Institut für Astronomie, Universität Bonn, GermanyInstitut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyResearch Department, Plasmas with Complex Interactions, Ruhr-Universität Bochum, GermanyInstitut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyKavli Institute for Astrophysics and Space Sciences, MIT, Cambridge, MA 02139, USAInstitut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyThe Voyager plasma observations show that the physics of the heliosheath is rather complex and that the temperature derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on <i>κ</i> distributions instead of Maxwellians because the former allows for much higher temperature. Here we show an easy way to calculate the <i>κ</i> temperatures when those estimated from the data are given as Maxwellian temperatures. We use the moments of the Maxwellian and <i>κ</i> distributions to estimate the <i>κ</i> temperature. Moreover, we show that the pressure (temperature) given by a truncated <i>κ</i> distribution is similar to that given by a Maxwellian and only starts to increase for higher truncation velocities. We deduce a simple formula to convert the Maxwellian to <i>κ</i> pressure or temperature. We apply this result to the Voyager 2 observations in the heliosheath.https://www.ann-geophys.net/36/37/2018/angeo-36-37-2018.pdf
collection DOAJ
language English
format Article
sources DOAJ
author K. Scherer
K. Scherer
H. J. Fahr
H. Fichtner
H. Fichtner
A. Sylla
J. D. Richardson
M. Lazar
spellingShingle K. Scherer
K. Scherer
H. J. Fahr
H. Fichtner
H. Fichtner
A. Sylla
J. D. Richardson
M. Lazar
Uncertainties in the heliosheath ion temperatures
Annales Geophysicae
author_facet K. Scherer
K. Scherer
H. J. Fahr
H. Fichtner
H. Fichtner
A. Sylla
J. D. Richardson
M. Lazar
author_sort K. Scherer
title Uncertainties in the heliosheath ion temperatures
title_short Uncertainties in the heliosheath ion temperatures
title_full Uncertainties in the heliosheath ion temperatures
title_fullStr Uncertainties in the heliosheath ion temperatures
title_full_unstemmed Uncertainties in the heliosheath ion temperatures
title_sort uncertainties in the heliosheath ion temperatures
publisher Copernicus Publications
series Annales Geophysicae
issn 0992-7689
1432-0576
publishDate 2018-01-01
description The Voyager plasma observations show that the physics of the heliosheath is rather complex and that the temperature derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on <i>κ</i> distributions instead of Maxwellians because the former allows for much higher temperature. Here we show an easy way to calculate the <i>κ</i> temperatures when those estimated from the data are given as Maxwellian temperatures. We use the moments of the Maxwellian and <i>κ</i> distributions to estimate the <i>κ</i> temperature. Moreover, we show that the pressure (temperature) given by a truncated <i>κ</i> distribution is similar to that given by a Maxwellian and only starts to increase for higher truncation velocities. We deduce a simple formula to convert the Maxwellian to <i>κ</i> pressure or temperature. We apply this result to the Voyager 2 observations in the heliosheath.
url https://www.ann-geophys.net/36/37/2018/angeo-36-37-2018.pdf
work_keys_str_mv AT kscherer uncertaintiesintheheliosheathiontemperatures
AT kscherer uncertaintiesintheheliosheathiontemperatures
AT hjfahr uncertaintiesintheheliosheathiontemperatures
AT hfichtner uncertaintiesintheheliosheathiontemperatures
AT hfichtner uncertaintiesintheheliosheathiontemperatures
AT asylla uncertaintiesintheheliosheathiontemperatures
AT jdrichardson uncertaintiesintheheliosheathiontemperatures
AT mlazar uncertaintiesintheheliosheathiontemperatures
_version_ 1725387429315084288