Uncertainties in the heliosheath ion temperatures
The Voyager plasma observations show that the physics of the heliosheath is rather complex and that the temperature derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on <i>κ</i> distributions inste...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-01-01
|
Series: | Annales Geophysicae |
Online Access: | https://www.ann-geophys.net/36/37/2018/angeo-36-37-2018.pdf |
id |
doaj-e29217444c2941ad8575e03c594e2af0 |
---|---|
record_format |
Article |
spelling |
doaj-e29217444c2941ad8575e03c594e2af02020-11-25T00:15:20ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762018-01-0136374610.5194/angeo-36-37-2018Uncertainties in the heliosheath ion temperaturesK. Scherer0K. Scherer1H. J. Fahr2H. Fichtner3H. Fichtner4A. Sylla5J. D. Richardson6M. Lazar7Institut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyResearch Department, Plasmas with Complex Interactions, Ruhr-Universität Bochum, GermanyArgelander Institut für Astronomie, Universität Bonn, GermanyInstitut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyResearch Department, Plasmas with Complex Interactions, Ruhr-Universität Bochum, GermanyInstitut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyKavli Institute for Astrophysics and Space Sciences, MIT, Cambridge, MA 02139, USAInstitut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, GermanyThe Voyager plasma observations show that the physics of the heliosheath is rather complex and that the temperature derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on <i>κ</i> distributions instead of Maxwellians because the former allows for much higher temperature. Here we show an easy way to calculate the <i>κ</i> temperatures when those estimated from the data are given as Maxwellian temperatures. We use the moments of the Maxwellian and <i>κ</i> distributions to estimate the <i>κ</i> temperature. Moreover, we show that the pressure (temperature) given by a truncated <i>κ</i> distribution is similar to that given by a Maxwellian and only starts to increase for higher truncation velocities. We deduce a simple formula to convert the Maxwellian to <i>κ</i> pressure or temperature. We apply this result to the Voyager 2 observations in the heliosheath.https://www.ann-geophys.net/36/37/2018/angeo-36-37-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
K. Scherer K. Scherer H. J. Fahr H. Fichtner H. Fichtner A. Sylla J. D. Richardson M. Lazar |
spellingShingle |
K. Scherer K. Scherer H. J. Fahr H. Fichtner H. Fichtner A. Sylla J. D. Richardson M. Lazar Uncertainties in the heliosheath ion temperatures Annales Geophysicae |
author_facet |
K. Scherer K. Scherer H. J. Fahr H. Fichtner H. Fichtner A. Sylla J. D. Richardson M. Lazar |
author_sort |
K. Scherer |
title |
Uncertainties in the heliosheath ion temperatures |
title_short |
Uncertainties in the heliosheath ion temperatures |
title_full |
Uncertainties in the heliosheath ion temperatures |
title_fullStr |
Uncertainties in the heliosheath ion temperatures |
title_full_unstemmed |
Uncertainties in the heliosheath ion temperatures |
title_sort |
uncertainties in the heliosheath ion temperatures |
publisher |
Copernicus Publications |
series |
Annales Geophysicae |
issn |
0992-7689 1432-0576 |
publishDate |
2018-01-01 |
description |
The Voyager plasma observations show that the physics of the heliosheath is rather complex and that the temperature
derived from observation particularly differs from expectations. To explain this fact, the temperature in the heliosheath should be based on
<i>κ</i> distributions instead of Maxwellians because the former allows for much higher temperature. Here we show an easy way to
calculate the <i>κ</i> temperatures when those estimated from the data are given as Maxwellian temperatures. We use the moments of
the Maxwellian and <i>κ</i> distributions to estimate the <i>κ</i> temperature. Moreover, we show that the pressure (temperature)
given by a truncated <i>κ</i> distribution is similar to that given by a Maxwellian and only starts to increase for higher truncation
velocities. We deduce a simple formula to convert the Maxwellian to <i>κ</i> pressure or temperature. We apply this result to the
Voyager 2 observations in the heliosheath. |
url |
https://www.ann-geophys.net/36/37/2018/angeo-36-37-2018.pdf |
work_keys_str_mv |
AT kscherer uncertaintiesintheheliosheathiontemperatures AT kscherer uncertaintiesintheheliosheathiontemperatures AT hjfahr uncertaintiesintheheliosheathiontemperatures AT hfichtner uncertaintiesintheheliosheathiontemperatures AT hfichtner uncertaintiesintheheliosheathiontemperatures AT asylla uncertaintiesintheheliosheathiontemperatures AT jdrichardson uncertaintiesintheheliosheathiontemperatures AT mlazar uncertaintiesintheheliosheathiontemperatures |
_version_ |
1725387429315084288 |