Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development
<p>Abstract</p> <p>Background</p> <p>Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although deubiquitylating (deubiquitinating) enzymes (DUBs) p...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2009-12-01
|
Series: | BMC Genomics |
Online Access: | http://www.biomedcentral.com/1471-2164/10/637 |
id |
doaj-e27ccc44f8ff437090565060defe1ed1 |
---|---|
record_format |
Article |
spelling |
doaj-e27ccc44f8ff437090565060defe1ed12020-11-24T23:51:18ZengBMCBMC Genomics1471-21642009-12-0110163710.1186/1471-2164-10-637Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish developmentNg QimeiHo Steven HKEisenhaber BirgitTse William KFEisenhaber FrankJiang Yun-Jin<p>Abstract</p> <p>Background</p> <p>Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although deubiquitylating (deubiquitinating) enzymes (DUBs) play a key role in this process, however, their function and regulation remain insufficiently understood. The "loss-of-function" phenotype studies can provide important information to elucidate the gene function, and zebrafish is an excellent model for this goal.</p> <p>Results</p> <p>From an <it>in silico </it>genome-wide search, we found more than 90 putative DUBs encoded in the zebrafish genome belonging to six different subclasses. Out of them, 85 from five classical subclasses have been tested with morpholino (MO) knockdown experiments and 57 of them were found to be important in early development of zebrafish. These DUB morphants resulted in a complex and pleiotropic phenotype that, regardless of gene target, always affected the notochord. Based on the <it>huC </it>neuronal marker expression, we grouped them into five sets (groups I to V). Group I DUBs (<it>otud7b, uchl3 </it>and <it>bap1</it>) appear to be involved in the Notch signaling pathway based on the neuronal hyperplasia, while group IV DUBs (<it>otud4, usp5, usp15 </it>and <it>usp25</it>) play a critical role in dorsoventral patterning through the BMP pathway.</p> <p>Conclusion</p> <p>We have identified an exhaustive list of genes in the zebrafish genome belonging to the five established classes of DUBs. Additionally, we performed the corresponding MO knockdown experiments in zebrafish as well as functional studies for a subset of the predicted DUB genes. The screen results in this work will stimulate functional follow-up studies of potential DUB genes using the zebrafish model system.</p> http://www.biomedcentral.com/1471-2164/10/637 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ng Qimei Ho Steven HK Eisenhaber Birgit Tse William KF Eisenhaber Frank Jiang Yun-Jin |
spellingShingle |
Ng Qimei Ho Steven HK Eisenhaber Birgit Tse William KF Eisenhaber Frank Jiang Yun-Jin Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development BMC Genomics |
author_facet |
Ng Qimei Ho Steven HK Eisenhaber Birgit Tse William KF Eisenhaber Frank Jiang Yun-Jin |
author_sort |
Ng Qimei |
title |
Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development |
title_short |
Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development |
title_full |
Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development |
title_fullStr |
Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development |
title_full_unstemmed |
Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development |
title_sort |
genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development |
publisher |
BMC |
series |
BMC Genomics |
issn |
1471-2164 |
publishDate |
2009-12-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although deubiquitylating (deubiquitinating) enzymes (DUBs) play a key role in this process, however, their function and regulation remain insufficiently understood. The "loss-of-function" phenotype studies can provide important information to elucidate the gene function, and zebrafish is an excellent model for this goal.</p> <p>Results</p> <p>From an <it>in silico </it>genome-wide search, we found more than 90 putative DUBs encoded in the zebrafish genome belonging to six different subclasses. Out of them, 85 from five classical subclasses have been tested with morpholino (MO) knockdown experiments and 57 of them were found to be important in early development of zebrafish. These DUB morphants resulted in a complex and pleiotropic phenotype that, regardless of gene target, always affected the notochord. Based on the <it>huC </it>neuronal marker expression, we grouped them into five sets (groups I to V). Group I DUBs (<it>otud7b, uchl3 </it>and <it>bap1</it>) appear to be involved in the Notch signaling pathway based on the neuronal hyperplasia, while group IV DUBs (<it>otud4, usp5, usp15 </it>and <it>usp25</it>) play a critical role in dorsoventral patterning through the BMP pathway.</p> <p>Conclusion</p> <p>We have identified an exhaustive list of genes in the zebrafish genome belonging to the five established classes of DUBs. Additionally, we performed the corresponding MO knockdown experiments in zebrafish as well as functional studies for a subset of the predicted DUB genes. The screen results in this work will stimulate functional follow-up studies of potential DUB genes using the zebrafish model system.</p> |
url |
http://www.biomedcentral.com/1471-2164/10/637 |
work_keys_str_mv |
AT ngqimei genomewidelossoffunctionanalysisofdeubiquitylatingenzymesforzebrafishdevelopment AT hostevenhk genomewidelossoffunctionanalysisofdeubiquitylatingenzymesforzebrafishdevelopment AT eisenhaberbirgit genomewidelossoffunctionanalysisofdeubiquitylatingenzymesforzebrafishdevelopment AT tsewilliamkf genomewidelossoffunctionanalysisofdeubiquitylatingenzymesforzebrafishdevelopment AT eisenhaberfrank genomewidelossoffunctionanalysisofdeubiquitylatingenzymesforzebrafishdevelopment AT jiangyunjin genomewidelossoffunctionanalysisofdeubiquitylatingenzymesforzebrafishdevelopment |
_version_ |
1725476431071281152 |