Wiener index of strong product of graphs
The Wiener index of a connected graph \(G\) is the sum of distances between all pairs of vertices of \(G\). The strong product is one of the four most investigated graph products. In this paper the general formula for the Wiener index of the strong product of connected graphs is given. The formula c...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2018-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol38/1/art/opuscula_math_3805.pdf |
Summary: | The Wiener index of a connected graph \(G\) is the sum of distances between all pairs of vertices of \(G\). The strong product is one of the four most investigated graph products. In this paper the general formula for the Wiener index of the strong product of connected graphs is given. The formula can be simplified if both factors are graphs with the constant eccentricity. Consequently, closed formulas for the Wiener index of the strong product of a connected graph \(G\) of constant eccentricity with a cycle are derived. |
---|---|
ISSN: | 1232-9274 |