Efficient precise in vivo base editing in adult dystrophic mice
Base editing is one approach used to correct mutations causing cause Duchenne muscular dystrophy (DMD), but limitations are in the requirement for a specific PAM motif and the large size beyond the packaging capacity of adeno-associated virus (AAV). Here, the authors modify the NG-targeting adenine...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-06-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-23996-y |
Summary: | Base editing is one approach used to correct mutations causing cause Duchenne muscular dystrophy (DMD), but limitations are in the requirement for a specific PAM motif and the large size beyond the packaging capacity of adeno-associated virus (AAV). Here, the authors modify the NG-targeting adenine base editor to recognize a broader PAM, devise an intein split strategy to package the otherwise oversized adenine base editor into AAV, and show it efficiently restores dystrophin expression in muscle and heart when systemically injected in a mouse model of DMD |
---|---|
ISSN: | 2041-1723 |