Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review
Soil contamination by heavy metals threatens the quality of agricultural products and human health, so it is necessary to choose certain economic and effective remediation techniques to control the continuous deterioration of land quality. This paper is intended to present an overview on the applica...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/25/14/3167 |
id |
doaj-e254da6119124a9ea67544ffc562e9a1 |
---|---|
record_format |
Article |
spelling |
doaj-e254da6119124a9ea67544ffc562e9a12020-11-25T03:44:34ZengMDPI AGMolecules1420-30492020-07-01253167316710.3390/molecules25143167Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A ReviewSheng Cheng0Tao Chen1Wenbin Xu2Jian Huang3Shaojun Jiang4Bo Yan5SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, ChinaSCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, ChinaDongjiang Environmental Company Limited, Nanshan District, Shenzhen 518057, ChinaSCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, ChinaSCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, ChinaSCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, ChinaSoil contamination by heavy metals threatens the quality of agricultural products and human health, so it is necessary to choose certain economic and effective remediation techniques to control the continuous deterioration of land quality. This paper is intended to present an overview on the application of biochar as an addition to the remediation of heavy-metal-contaminated soil, in terms of its preparation technologies and performance characteristics, remediation mechanisms and effects, and impacts on heavy metal bioavailability. Biochar is a carbon-neutral or carbon-negative product produced by the thermochemical transformation of plant- and animal-based biomass. Biochar shows numerous advantages in increasing soil pH value and organic carbon content, improving soil water-holding capacity, reducing the available fraction of heavy metals, increasing agricultural crop yield and inhibiting the uptake and accumulation of heavy metals. Different conditions, such as biomass type, pyrolysis temperature, heating rate and residence time are the pivotal factors governing the performance characteristics of biochar. Affected by the pH value and dissolved organic carbon and ash content of biochar, the interaction mechanisms between biochar and heavy metals mainly includes complexation, reduction, cation exchange, electrostatic attraction and precipitation. Finally, the potential risks of in-situ remediation strategy of biochar are expounded upon, which provides the directions for future research to ensure the safe production and sustainable utilization of biochar.https://www.mdpi.com/1420-3049/25/14/3167biocharpyrolysisheavy metalssoil remediationbioavailability |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sheng Cheng Tao Chen Wenbin Xu Jian Huang Shaojun Jiang Bo Yan |
spellingShingle |
Sheng Cheng Tao Chen Wenbin Xu Jian Huang Shaojun Jiang Bo Yan Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review Molecules biochar pyrolysis heavy metals soil remediation bioavailability |
author_facet |
Sheng Cheng Tao Chen Wenbin Xu Jian Huang Shaojun Jiang Bo Yan |
author_sort |
Sheng Cheng |
title |
Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review |
title_short |
Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review |
title_full |
Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review |
title_fullStr |
Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review |
title_full_unstemmed |
Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review |
title_sort |
application research of biochar for the remediation of soil heavy metals contamination: a review |
publisher |
MDPI AG |
series |
Molecules |
issn |
1420-3049 |
publishDate |
2020-07-01 |
description |
Soil contamination by heavy metals threatens the quality of agricultural products and human health, so it is necessary to choose certain economic and effective remediation techniques to control the continuous deterioration of land quality. This paper is intended to present an overview on the application of biochar as an addition to the remediation of heavy-metal-contaminated soil, in terms of its preparation technologies and performance characteristics, remediation mechanisms and effects, and impacts on heavy metal bioavailability. Biochar is a carbon-neutral or carbon-negative product produced by the thermochemical transformation of plant- and animal-based biomass. Biochar shows numerous advantages in increasing soil pH value and organic carbon content, improving soil water-holding capacity, reducing the available fraction of heavy metals, increasing agricultural crop yield and inhibiting the uptake and accumulation of heavy metals. Different conditions, such as biomass type, pyrolysis temperature, heating rate and residence time are the pivotal factors governing the performance characteristics of biochar. Affected by the pH value and dissolved organic carbon and ash content of biochar, the interaction mechanisms between biochar and heavy metals mainly includes complexation, reduction, cation exchange, electrostatic attraction and precipitation. Finally, the potential risks of in-situ remediation strategy of biochar are expounded upon, which provides the directions for future research to ensure the safe production and sustainable utilization of biochar. |
topic |
biochar pyrolysis heavy metals soil remediation bioavailability |
url |
https://www.mdpi.com/1420-3049/25/14/3167 |
work_keys_str_mv |
AT shengcheng applicationresearchofbiocharfortheremediationofsoilheavymetalscontaminationareview AT taochen applicationresearchofbiocharfortheremediationofsoilheavymetalscontaminationareview AT wenbinxu applicationresearchofbiocharfortheremediationofsoilheavymetalscontaminationareview AT jianhuang applicationresearchofbiocharfortheremediationofsoilheavymetalscontaminationareview AT shaojunjiang applicationresearchofbiocharfortheremediationofsoilheavymetalscontaminationareview AT boyan applicationresearchofbiocharfortheremediationofsoilheavymetalscontaminationareview |
_version_ |
1724514057294184448 |