Shear model with shear-flexure interaction for non-linear analysis of reinforced concrete frame element

This paper presents the shear constitutive model for the reinforced concrete (R/C) frame structures analysis under monotonic and cyclic loading. The proposed model is adopted and modified from Mergos and Koppos model [1] that accounts the shear stiffness degradation effect by the shear-flexure inter...

Full description

Bibliographic Details
Main Authors: Sae-Long Worathep, Limkatanyu Suchart
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2018/51/matecconf_iceast2018_02003.pdf
Description
Summary:This paper presents the shear constitutive model for the reinforced concrete (R/C) frame structures analysis under monotonic and cyclic loading. The proposed model is adopted and modified from Mergos and Koppos model [1] that accounts the shear stiffness degradation effect by the shear-flexure interaction in the plastic hinge region. Firstly, the proposed shear model starts from the primary curve without the damages due to the shear-flexure interaction effect. Then, the shear-flexure interaction effect is taken into consideration at the locations of plastic hinges and this effect leads to the degradation of the shear strength and shear stiffness on the undamaged primary curve that is replaced with the damaged primary curve. To determine the sectional shear stiffness with the shear-flexure interaction, an alternative way of the iterative procedure is proposed here. Finally, a numerical example is used to verify the characteristics and behavior of the R/C frame system and confirm accuracy and computational efficiency of the proposed model among the experimental data.
ISSN:2261-236X