Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels
We prove the uniform L1→L1,∞ and HE1→L1 boundedness of oscillatory singular integral operators whose kernels are the products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel K(x,y) satisfying a Hölder condition. This Hölder condition appreciably weakens the C1 condition im...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2019/8561402 |
id |
doaj-e22e96d949fb4456903680afcda84faa |
---|---|
record_format |
Article |
spelling |
doaj-e22e96d949fb4456903680afcda84faa2020-11-25T00:28:54ZengHindawi LimitedJournal of Function Spaces2314-88962314-88882019-01-01201910.1155/2019/85614028561402Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class KernelsHussain Al-Qassem0Leslie Cheng1Yibiao Pan2Department of Mathematics and Physics, Qatar University, Doha, QatarDepartment of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010, USADepartment of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USAWe prove the uniform L1→L1,∞ and HE1→L1 boundedness of oscillatory singular integral operators whose kernels are the products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel K(x,y) satisfying a Hölder condition. This Hölder condition appreciably weakens the C1 condition imposed in existing literature.http://dx.doi.org/10.1155/2019/8561402 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hussain Al-Qassem Leslie Cheng Yibiao Pan |
spellingShingle |
Hussain Al-Qassem Leslie Cheng Yibiao Pan Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels Journal of Function Spaces |
author_facet |
Hussain Al-Qassem Leslie Cheng Yibiao Pan |
author_sort |
Hussain Al-Qassem |
title |
Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels |
title_short |
Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels |
title_full |
Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels |
title_fullStr |
Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels |
title_full_unstemmed |
Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels |
title_sort |
endpoint estimates for oscillatory singular integrals with hölder class kernels |
publisher |
Hindawi Limited |
series |
Journal of Function Spaces |
issn |
2314-8896 2314-8888 |
publishDate |
2019-01-01 |
description |
We prove the uniform L1→L1,∞ and HE1→L1 boundedness of oscillatory singular integral operators whose kernels are the products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel K(x,y) satisfying a Hölder condition. This Hölder condition appreciably weakens the C1 condition imposed in existing literature. |
url |
http://dx.doi.org/10.1155/2019/8561402 |
work_keys_str_mv |
AT hussainalqassem endpointestimatesforoscillatorysingularintegralswithholderclasskernels AT lesliecheng endpointestimatesforoscillatorysingularintegralswithholderclasskernels AT yibiaopan endpointestimatesforoscillatorysingularintegralswithholderclasskernels |
_version_ |
1725333709076299776 |