Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels

We prove the uniform L1→L1,∞ and HE1→L1 boundedness of oscillatory singular integral operators whose kernels are the products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel K(x,y) satisfying a Hölder condition. This Hölder condition appreciably weakens the C1 condition im...

Full description

Bibliographic Details
Main Authors: Hussain Al-Qassem, Leslie Cheng, Yibiao Pan
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2019/8561402
Description
Summary:We prove the uniform L1→L1,∞ and HE1→L1 boundedness of oscillatory singular integral operators whose kernels are the products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel K(x,y) satisfying a Hölder condition. This Hölder condition appreciably weakens the C1 condition imposed in existing literature.
ISSN:2314-8896
2314-8888