On the Convergence Ball and Error Analysis of the Modified Secant Method

We aim to study the convergence properties of a modification of secant iteration methods. We present a new local convergence theorem for the modified secant method, where the derivative of the nonlinear operator satisfies Lipchitz condition. We introduce the convergence ball and error estimate of th...

Full description

Bibliographic Details
Main Authors: Rongfei Lin, Qingbiao Wu, Minhong Chen, Xuemin Lei
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2018/2704876
Description
Summary:We aim to study the convergence properties of a modification of secant iteration methods. We present a new local convergence theorem for the modified secant method, where the derivative of the nonlinear operator satisfies Lipchitz condition. We introduce the convergence ball and error estimate of the modified secant method, respectively. For that, we use a technique based on Fibonacci series. At last, some numerical examples are given.
ISSN:1687-9120
1687-9139