On the Convergence Ball and Error Analysis of the Modified Secant Method
We aim to study the convergence properties of a modification of secant iteration methods. We present a new local convergence theorem for the modified secant method, where the derivative of the nonlinear operator satisfies Lipchitz condition. We introduce the convergence ball and error estimate of th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2018/2704876 |
Summary: | We aim to study the convergence properties of a modification of secant iteration methods. We present a new local convergence theorem for the modified secant method, where the derivative of the nonlinear operator satisfies Lipchitz condition. We introduce the convergence ball and error estimate of the modified secant method, respectively. For that, we use a technique based on Fibonacci series. At last, some numerical examples are given. |
---|---|
ISSN: | 1687-9120 1687-9139 |