The Hermite–Hadamard–Jensen–Mercer Type Inequalities for Riemann–Liouville Fractional Integral
In this paper, we give Hermite–Hadamard type inequalities of the Jensen–Mercer type for Riemann–Liouville fractional integrals. We prove integral identities, and with the help of these identities and some other eminent inequalities, such as Jensen, Hölder, and power mean inequalities, we obtain boun...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2021/5516987 |
Summary: | In this paper, we give Hermite–Hadamard type inequalities of the Jensen–Mercer type for Riemann–Liouville fractional integrals. We prove integral identities, and with the help of these identities and some other eminent inequalities, such as Jensen, Hölder, and power mean inequalities, we obtain bounds for the difference of the newly obtained inequalities. |
---|---|
ISSN: | 2314-4785 |