Single Parameter Adaptive Control of Unknown Nonlinear Systems with Tracking Error Constraints

This paper investigates a single parameter adaptive neural network control method for unknown nonlinear systems with bounded external disturbances. A smooth performance function is developed to achieve the transient and steady state of system tracking error that could be constrained in prescribed bo...

Full description

Bibliographic Details
Main Authors: Hongjun Yang, Zhijie Liu, Shuang Zhang
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/6457354
Description
Summary:This paper investigates a single parameter adaptive neural network control method for unknown nonlinear systems with bounded external disturbances. A smooth performance function is developed to achieve the transient and steady state of system tracking error that could be constrained in prescribed bounds. The difficulties in dealing with unknown system parameters and disturbances of nonlinear systems are resolved based on the single parameter adaptive neural network control which is proposed to effectively reduce the calculation amount. The theoretical analysis implies that the proposed control scheme makes the closed-loop system uniformly ultimately bounded. Simulation demonstrates that the proposed adaptive controller gives a favorable performance on tracking desired signal and constraining the bounds of tracking error which could be arbitrarily small with appropriate adaptive parameters. Both the theoretical analysis and simulations confirm the effectiveness of the control scheme.
ISSN:1076-2787
1099-0526