Renewable Energy Products through Bioremediation of Wastewater
Due to rapid urbanization and industrialization, the population density of the world is intense in developing countries. This overgrowing population has resulted in the production of huge amounts of waste/refused water due to various anthropogenic activities. Household, municipal corporations (MC),...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Sustainability |
Subjects: | |
Online Access: | https://www.mdpi.com/2071-1050/12/18/7501 |
id |
doaj-e17830e6c37646028868de4609d34853 |
---|---|
record_format |
Article |
spelling |
doaj-e17830e6c37646028868de4609d348532020-11-25T03:24:34ZengMDPI AGSustainability2071-10502020-09-01127501750110.3390/su12187501Renewable Energy Products through Bioremediation of WastewaterRavi Kant Bhatia0Deepak Sakhuja1Shyam Mundhe2Abhishek Walia3Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171005 (H.P.), IndiaDepartment of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171005 (H.P.), IndiaDepartment of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171005 (H.P.), IndiaDepartment of Microbiology, College of Basic Sciences, CSKHPKV, Palampur 176062 (H.P.), IndiaDue to rapid urbanization and industrialization, the population density of the world is intense in developing countries. This overgrowing population has resulted in the production of huge amounts of waste/refused water due to various anthropogenic activities. Household, municipal corporations (MC), urban local bodies (ULBs), and industries produce a huge amount of waste water, which is discharged into nearby water bodies and streams/rivers without proper treatment, resulting in water pollution. This mismanaged treatment of wastewater leads to various challenges like loss of energy to treat the wastewater and scarcity of fresh water, beside various water born infections. However, all these major issues can provide solutions to each other. Most of the wastewater generated by ULBs and industries is rich in various biopolymers like starch, lactose, glucose lignocellulose, protein, lipids, fats, and minerals, etc. These biopolymers can be converted into sustainable biofuels, i.e., ethanol, butanol, biodiesel, biogas, hydrogen, methane, biohythane, etc., through its bioremediation followed by dark fermentation (DF) and anaerobic digestion (AD). The key challenge is to plan strategies in such a way that they not only help in the treatment of wastewater, but also produce some valuable energy driven products from it. This review will deal with various strategies being used in the treatment of wastewater as well as for production of some valuable energy products from it to tackle the upcoming future demands and challenges of fresh water and energy crisis, along with sustainable development.https://www.mdpi.com/2071-1050/12/18/7501effluentanaerobic digestionincinerationCo-pyrolysissyngasbiodiesel |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ravi Kant Bhatia Deepak Sakhuja Shyam Mundhe Abhishek Walia |
spellingShingle |
Ravi Kant Bhatia Deepak Sakhuja Shyam Mundhe Abhishek Walia Renewable Energy Products through Bioremediation of Wastewater Sustainability effluent anaerobic digestion incineration Co-pyrolysis syngas biodiesel |
author_facet |
Ravi Kant Bhatia Deepak Sakhuja Shyam Mundhe Abhishek Walia |
author_sort |
Ravi Kant Bhatia |
title |
Renewable Energy Products through Bioremediation of Wastewater |
title_short |
Renewable Energy Products through Bioremediation of Wastewater |
title_full |
Renewable Energy Products through Bioremediation of Wastewater |
title_fullStr |
Renewable Energy Products through Bioremediation of Wastewater |
title_full_unstemmed |
Renewable Energy Products through Bioremediation of Wastewater |
title_sort |
renewable energy products through bioremediation of wastewater |
publisher |
MDPI AG |
series |
Sustainability |
issn |
2071-1050 |
publishDate |
2020-09-01 |
description |
Due to rapid urbanization and industrialization, the population density of the world is intense in developing countries. This overgrowing population has resulted in the production of huge amounts of waste/refused water due to various anthropogenic activities. Household, municipal corporations (MC), urban local bodies (ULBs), and industries produce a huge amount of waste water, which is discharged into nearby water bodies and streams/rivers without proper treatment, resulting in water pollution. This mismanaged treatment of wastewater leads to various challenges like loss of energy to treat the wastewater and scarcity of fresh water, beside various water born infections. However, all these major issues can provide solutions to each other. Most of the wastewater generated by ULBs and industries is rich in various biopolymers like starch, lactose, glucose lignocellulose, protein, lipids, fats, and minerals, etc. These biopolymers can be converted into sustainable biofuels, i.e., ethanol, butanol, biodiesel, biogas, hydrogen, methane, biohythane, etc., through its bioremediation followed by dark fermentation (DF) and anaerobic digestion (AD). The key challenge is to plan strategies in such a way that they not only help in the treatment of wastewater, but also produce some valuable energy driven products from it. This review will deal with various strategies being used in the treatment of wastewater as well as for production of some valuable energy products from it to tackle the upcoming future demands and challenges of fresh water and energy crisis, along with sustainable development. |
topic |
effluent anaerobic digestion incineration Co-pyrolysis syngas biodiesel |
url |
https://www.mdpi.com/2071-1050/12/18/7501 |
work_keys_str_mv |
AT ravikantbhatia renewableenergyproductsthroughbioremediationofwastewater AT deepaksakhuja renewableenergyproductsthroughbioremediationofwastewater AT shyammundhe renewableenergyproductsthroughbioremediationofwastewater AT abhishekwalia renewableenergyproductsthroughbioremediationofwastewater |
_version_ |
1724601515662901248 |