In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring

Quality inspection is the necessary procedure before bearings leaving manufacturing factories. A testing machine with low shaft speed and light radial load condition is generally used to test the dynamic quality of bearings, which avoids creating any potential damages to testing bearings. However, t...

Full description

Bibliographic Details
Main Authors: Kuosheng Jiang, Lianghe Li, Liubang Han, Shuai Gou
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/5656143
id doaj-e16dc9cc0231465a836c12c494b821b7
record_format Article
spelling doaj-e16dc9cc0231465a836c12c494b821b72020-11-25T01:36:56ZengHindawi LimitedShock and Vibration1070-96221875-92032019-01-01201910.1155/2019/56561435656143In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer RingKuosheng Jiang0Lianghe Li1Liubang Han2Shuai Gou3School of Mechanical Engineering, Anhui University of Science & Technology, Huainan 232001, ChinaSchool of Mechanical Engineering, Anhui University of Science & Technology, Huainan 232001, ChinaSchool of Mechanical Engineering, Anhui University of Science & Technology, Huainan 232001, ChinaSchool of Mechanical Engineering, Anhui University of Science & Technology, Huainan 232001, ChinaQuality inspection is the necessary procedure before bearings leaving manufacturing factories. A testing machine with low shaft speed and light radial load condition is generally used to test the dynamic quality of bearings, which avoids creating any potential damages to testing bearings. However, the signal of defective bearings is easily polluted by very weak noise using the traditional vibration-based measurement method due to the low shaft speed and light radial load condition specified for nondestructive inspection, which needs complicated and time-consuming calculation and is not suitable for online inspection. Thus, there are problems about special operating conditions and weak fault severity in quality inspection of bearings, which is quite different from the fault diagnosis of bearings. In this paper, a novel dynamic quality evaluation technique is proposed based on the measurement of Hertz deformations. The measurement system is mainly composed of an eddy current sensor, sensor fixture, and data acquisition platform with less transfer path than the vibration-based measurement system. The sensor fixture is optimized through numerical simulations to obtain signals with a high signal-to-noise ratio. Accurate evaluation of dynamic quality can be implemented reliably with simple signal processing. The proposed method can be used with a rotating speed of 100 rev/min and test load of 100 N, which is remarkably lower than the traditional quality inspection machineries with a rotating speed of around 1000 rev/min and the test load of 400 N. Both simulation and experiment studies have verified the proposed method.http://dx.doi.org/10.1155/2019/5656143
collection DOAJ
language English
format Article
sources DOAJ
author Kuosheng Jiang
Lianghe Li
Liubang Han
Shuai Gou
spellingShingle Kuosheng Jiang
Lianghe Li
Liubang Han
Shuai Gou
In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring
Shock and Vibration
author_facet Kuosheng Jiang
Lianghe Li
Liubang Han
Shuai Gou
author_sort Kuosheng Jiang
title In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring
title_short In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring
title_full In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring
title_fullStr In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring
title_full_unstemmed In-Process Quality Inspection of Rolling Element Bearings Based on the Measurement of Microelastic Deformation of Outer Ring
title_sort in-process quality inspection of rolling element bearings based on the measurement of microelastic deformation of outer ring
publisher Hindawi Limited
series Shock and Vibration
issn 1070-9622
1875-9203
publishDate 2019-01-01
description Quality inspection is the necessary procedure before bearings leaving manufacturing factories. A testing machine with low shaft speed and light radial load condition is generally used to test the dynamic quality of bearings, which avoids creating any potential damages to testing bearings. However, the signal of defective bearings is easily polluted by very weak noise using the traditional vibration-based measurement method due to the low shaft speed and light radial load condition specified for nondestructive inspection, which needs complicated and time-consuming calculation and is not suitable for online inspection. Thus, there are problems about special operating conditions and weak fault severity in quality inspection of bearings, which is quite different from the fault diagnosis of bearings. In this paper, a novel dynamic quality evaluation technique is proposed based on the measurement of Hertz deformations. The measurement system is mainly composed of an eddy current sensor, sensor fixture, and data acquisition platform with less transfer path than the vibration-based measurement system. The sensor fixture is optimized through numerical simulations to obtain signals with a high signal-to-noise ratio. Accurate evaluation of dynamic quality can be implemented reliably with simple signal processing. The proposed method can be used with a rotating speed of 100 rev/min and test load of 100 N, which is remarkably lower than the traditional quality inspection machineries with a rotating speed of around 1000 rev/min and the test load of 400 N. Both simulation and experiment studies have verified the proposed method.
url http://dx.doi.org/10.1155/2019/5656143
work_keys_str_mv AT kuoshengjiang inprocessqualityinspectionofrollingelementbearingsbasedonthemeasurementofmicroelasticdeformationofouterring
AT liangheli inprocessqualityinspectionofrollingelementbearingsbasedonthemeasurementofmicroelasticdeformationofouterring
AT liubanghan inprocessqualityinspectionofrollingelementbearingsbasedonthemeasurementofmicroelasticdeformationofouterring
AT shuaigou inprocessqualityinspectionofrollingelementbearingsbasedonthemeasurementofmicroelasticdeformationofouterring
_version_ 1725060792347262976