A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy Measure
This paper proposes a novel criterion for an improved writer enrolment based on an entropy measure for online genuine signatures. As online signature is a temporal signal, we measure the time-normalized entropy of each genuine signature, namely, its average entropy per second. Entropy is computed lo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://dx.doi.org/10.1155/2009/964746 |
id |
doaj-e1310642da7f4b06b3109c84f1f66fb6 |
---|---|
record_format |
Article |
spelling |
doaj-e1310642da7f4b06b3109c84f1f66fb62020-11-25T00:11:41ZengSpringerOpenEURASIP Journal on Advances in Signal Processing1687-61721687-61802009-01-01200910.1155/2009/964746A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy MeasureSonia Garcia-SalicettiNesma HoumaniBernadette DorizziThis paper proposes a novel criterion for an improved writer enrolment based on an entropy measure for online genuine signatures. As online signature is a temporal signal, we measure the time-normalized entropy of each genuine signature, namely, its average entropy per second. Entropy is computed locally, on portions of a genuine signature, based on local density estimation by a Client-Hidden Markov Model. The average time-normalized entropy computed on a set of genuine signatures allows then categorizing writers in an unsupervised way, using a K-Means algorithm. Linearly separable and visually coherent classes of writers are obtained on MCYT-100 database and on a subset of BioSecure DS2 containing 104 persons (DS2-104). These categories can be analyzed in terms of variability and complexity measures that we have defined in this work. Moreover, as each category can be associated with a signature prototype inherited from the K-Means procedure, we can generalize the writer categorization process on the large subset DS2-382 from the same DS2 database, containing 382 persons. Performance assessment shows that one category of signatures is significantly more reliable in the recognition phase, and given the fact that our categorization can be used online, we propose a novel criterion for enhanced writer enrolment. http://dx.doi.org/10.1155/2009/964746 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sonia Garcia-Salicetti Nesma Houmani Bernadette Dorizzi |
spellingShingle |
Sonia Garcia-Salicetti Nesma Houmani Bernadette Dorizzi A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy Measure EURASIP Journal on Advances in Signal Processing |
author_facet |
Sonia Garcia-Salicetti Nesma Houmani Bernadette Dorizzi |
author_sort |
Sonia Garcia-Salicetti |
title |
A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy Measure |
title_short |
A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy Measure |
title_full |
A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy Measure |
title_fullStr |
A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy Measure |
title_full_unstemmed |
A Novel Criterion for Writer Enrolment Based on a Time-Normalized Signature Sample Entropy Measure |
title_sort |
novel criterion for writer enrolment based on a time-normalized signature sample entropy measure |
publisher |
SpringerOpen |
series |
EURASIP Journal on Advances in Signal Processing |
issn |
1687-6172 1687-6180 |
publishDate |
2009-01-01 |
description |
This paper proposes a novel criterion for an improved writer enrolment based on an entropy measure for online genuine signatures. As online signature is a temporal signal, we measure the time-normalized entropy of each genuine signature, namely, its average entropy per second. Entropy is computed locally, on portions of a genuine signature, based on local density estimation by a Client-Hidden Markov Model. The average time-normalized entropy computed on a set of genuine signatures allows then categorizing writers in an unsupervised way, using a K-Means algorithm. Linearly separable and visually coherent classes of writers are obtained on MCYT-100 database and on a subset of BioSecure DS2 containing 104 persons (DS2-104). These categories can be analyzed in terms of variability and complexity measures that we have defined in this work. Moreover, as each category can be associated with a signature prototype inherited from the K-Means procedure, we can generalize the writer categorization process on the large subset DS2-382 from the same DS2 database, containing 382 persons. Performance assessment shows that one category of signatures is significantly more reliable in the recognition phase, and given the fact that our categorization can be used online, we propose a novel criterion for enhanced writer enrolment. |
url |
http://dx.doi.org/10.1155/2009/964746 |
work_keys_str_mv |
AT soniagarciasalicetti anovelcriterionforwriterenrolmentbasedonatimenormalizedsignaturesampleentropymeasure AT nesmahoumani anovelcriterionforwriterenrolmentbasedonatimenormalizedsignaturesampleentropymeasure AT bernadettedorizzi anovelcriterionforwriterenrolmentbasedonatimenormalizedsignaturesampleentropymeasure AT soniagarciasalicetti novelcriterionforwriterenrolmentbasedonatimenormalizedsignaturesampleentropymeasure AT nesmahoumani novelcriterionforwriterenrolmentbasedonatimenormalizedsignaturesampleentropymeasure AT bernadettedorizzi novelcriterionforwriterenrolmentbasedonatimenormalizedsignaturesampleentropymeasure |
_version_ |
1725402841309249536 |