Experimental Performance Analysis of Shallow Spiral-tube Ground Heat Exchangers in Series and Parallel Configurations

Ground source cooling system (GSCS) uses a ground heat exchanger (GHE) for exchanging heat with the ground. A spiral-tube GHE is gaining interest in recent year. This study presents an experimental analysis of thermal performance of shallow spiral-tube ground heat exchanger (GHE) installed in the gr...

Full description

Bibliographic Details
Main Authors: Jalaluddin, Miyara Akio, Tarakka Rustan, Ilahi Ramadhani Muhammad Anis
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:E3S Web of Conferences
Subjects:
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/56/e3sconf_ic-amme2018_01017.pdf
Description
Summary:Ground source cooling system (GSCS) uses a ground heat exchanger (GHE) for exchanging heat with the ground. A spiral-tube GHE is gaining interest in recent year. This study presents an experimental analysis of thermal performance of shallow spiral-tube ground heat exchanger (GHE) installed in the ground at 3 m depth in series and parallel configurations. These GHE configurations offer a compromise between the conventional vertical and horizontal GHEs. The spiral-tube GHE which is consist of spiral pipe installed in the borehole provides a better performance in application of GSCS. The thermal performances ofspiraltube GHE in series and parallel configurations were investigated under actual condition. Inlet and outlet temperatures of the both configurations were measured and periodically recorded. The average heat exchange rates of the GHEs are 122.4 W m –1 in parallel configuration and 86.2 W m –1in series configuration. Heat exchange rate of the spiral-tube GHEs in parallel configuration provides a better performance than that of in series configuration. The spiral-tube GHE in shallow depth can be applied in the GSCS.
ISSN:2267-1242