Analysis Model of Cost-Effectiveness for Value Evaluation of Building Elements

As various building materials have been developed, the combination of materials that make up the building elements has also increased exponentially. The materials making up the elements of the building will affect the performance of the building and the LCC. In order to improve the value of building...

Full description

Bibliographic Details
Main Author: Jongsik Lee
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/6350178
id doaj-e0e4d4966c5c4ceebab2b9f070c864bb
record_format Article
spelling doaj-e0e4d4966c5c4ceebab2b9f070c864bb2020-11-24T23:56:45ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472018-01-01201810.1155/2018/63501786350178Analysis Model of Cost-Effectiveness for Value Evaluation of Building ElementsJongsik Lee0Department of Architectural Engineering, Songwon University, 73 Songam-ro, Nam-gu, Gwangju 61756, Republic of KoreaAs various building materials have been developed, the combination of materials that make up the building elements has also increased exponentially. The materials making up the elements of the building will affect the performance of the building and the LCC. In order to improve the value of buildings in Korea, value engineering has been mandated in public construction projects with a project cost of over 10 billion won since 2000. The value index for systems (materials, elements, facilities, etc.) constituting buildings is calculated. However, the method for calculating the value index has not yet been normalized. The performance evaluation of the building systems (materials, elements, facilities, etc.) used in the current work and the method of calculating the value index for converting the LCC into a grade may vary depending on how the range of the grade is set. Even if the objects being evaluated are the same, there arises a problem that the results change depending on the value evaluation method. Therefore, this study tried to develop a value evaluation method that could draw consistent value evaluation results. For this purpose, this study presents a cost-effectiveness analysis model for the physical performance of the building elements and the value evaluation of LCC. Since the various physical performances of the building elements have different properties, normalization is required for comparison of physical performance values. In order to normalize the LCC and the 14 different physical performances of the building elements, a numerical model was designed using a linear transformation method and a vector normalization method. The cost-effectiveness analysis model proposed in this study was applied to two types of floor elements applicable to apartments in Korea, in order to evaluate the value and verify the consistency of this study’s model. The cost-effectiveness analysis model proposed in this study can help to derive reliable results when it comes to value evaluation for various existing building element compositions.http://dx.doi.org/10.1155/2018/6350178
collection DOAJ
language English
format Article
sources DOAJ
author Jongsik Lee
spellingShingle Jongsik Lee
Analysis Model of Cost-Effectiveness for Value Evaluation of Building Elements
Mathematical Problems in Engineering
author_facet Jongsik Lee
author_sort Jongsik Lee
title Analysis Model of Cost-Effectiveness for Value Evaluation of Building Elements
title_short Analysis Model of Cost-Effectiveness for Value Evaluation of Building Elements
title_full Analysis Model of Cost-Effectiveness for Value Evaluation of Building Elements
title_fullStr Analysis Model of Cost-Effectiveness for Value Evaluation of Building Elements
title_full_unstemmed Analysis Model of Cost-Effectiveness for Value Evaluation of Building Elements
title_sort analysis model of cost-effectiveness for value evaluation of building elements
publisher Hindawi Limited
series Mathematical Problems in Engineering
issn 1024-123X
1563-5147
publishDate 2018-01-01
description As various building materials have been developed, the combination of materials that make up the building elements has also increased exponentially. The materials making up the elements of the building will affect the performance of the building and the LCC. In order to improve the value of buildings in Korea, value engineering has been mandated in public construction projects with a project cost of over 10 billion won since 2000. The value index for systems (materials, elements, facilities, etc.) constituting buildings is calculated. However, the method for calculating the value index has not yet been normalized. The performance evaluation of the building systems (materials, elements, facilities, etc.) used in the current work and the method of calculating the value index for converting the LCC into a grade may vary depending on how the range of the grade is set. Even if the objects being evaluated are the same, there arises a problem that the results change depending on the value evaluation method. Therefore, this study tried to develop a value evaluation method that could draw consistent value evaluation results. For this purpose, this study presents a cost-effectiveness analysis model for the physical performance of the building elements and the value evaluation of LCC. Since the various physical performances of the building elements have different properties, normalization is required for comparison of physical performance values. In order to normalize the LCC and the 14 different physical performances of the building elements, a numerical model was designed using a linear transformation method and a vector normalization method. The cost-effectiveness analysis model proposed in this study was applied to two types of floor elements applicable to apartments in Korea, in order to evaluate the value and verify the consistency of this study’s model. The cost-effectiveness analysis model proposed in this study can help to derive reliable results when it comes to value evaluation for various existing building element compositions.
url http://dx.doi.org/10.1155/2018/6350178
work_keys_str_mv AT jongsiklee analysismodelofcosteffectivenessforvalueevaluationofbuildingelements
_version_ 1725456709030248448