Mathematical Modeling and Simulations for Large-Strain J-Shaped Diagrams of Soft Biological Materials

Herein, we study stress–strain diagrams of soft biological materials such as animal skin, muscles, and arteries by Finsler geometry (FG) modeling. The stress–strain diagram of these biological materials is always J-shaped and is composed of toe, heel, linear, and failure regions....

Full description

Bibliographic Details
Main Authors: Kazuhiko Mitsuhashi, Swapan Ghosh, Hiroshi Koibuchi
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/10/7/715
Description
Summary:Herein, we study stress–strain diagrams of soft biological materials such as animal skin, muscles, and arteries by Finsler geometry (FG) modeling. The stress–strain diagram of these biological materials is always J-shaped and is composed of toe, heel, linear, and failure regions. In the toe region, the stress is almost zero, and the length of this zero-stress region becomes very large (≃150%) in, for example, certain arteries. In this paper, we study long-toe diagrams using two-dimensional (2D) and 3D FG modeling techniques and Monte Carlo (MC) simulations. We find that, except for the failure region, large-strain J-shaped diagrams are successfully reproduced by the FG models. This implies that the complex J-shaped curves originate from the interaction between the directional and positional degrees of freedom of polymeric molecules, as implemented in the FG model.
ISSN:2073-4360