A Test Matrix for an Inverse Eigenvalue Problem

We present a real symmetric tridiagonal matrix of order n whose eigenvalues are {2k}k=0n-1 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l+1}l=0n-2. The matrix entries are explicit functions of the size n, and so the matrix...

Full description

Bibliographic Details
Main Authors: G. M. L. Gladwell, T. H. Jones, N. B. Willms
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/515082
id doaj-e0dc44a5ee8d4798a35ff7f86dce13fb
record_format Article
spelling doaj-e0dc44a5ee8d4798a35ff7f86dce13fb2020-11-24T23:37:27ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/515082515082A Test Matrix for an Inverse Eigenvalue ProblemG. M. L. Gladwell0T. H. Jones1N. B. Willms2Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, CanadaDepartment of Mathematics, Bishop’s University, Sherbrooke, QC, J1M 2H2, CanadaDepartment of Mathematics, Bishop’s University, Sherbrooke, QC, J1M 2H2, CanadaWe present a real symmetric tridiagonal matrix of order n whose eigenvalues are {2k}k=0n-1 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l+1}l=0n-2. The matrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution of a spring-mass inverse problem incorporating the test matrix is provided.http://dx.doi.org/10.1155/2014/515082
collection DOAJ
language English
format Article
sources DOAJ
author G. M. L. Gladwell
T. H. Jones
N. B. Willms
spellingShingle G. M. L. Gladwell
T. H. Jones
N. B. Willms
A Test Matrix for an Inverse Eigenvalue Problem
Journal of Applied Mathematics
author_facet G. M. L. Gladwell
T. H. Jones
N. B. Willms
author_sort G. M. L. Gladwell
title A Test Matrix for an Inverse Eigenvalue Problem
title_short A Test Matrix for an Inverse Eigenvalue Problem
title_full A Test Matrix for an Inverse Eigenvalue Problem
title_fullStr A Test Matrix for an Inverse Eigenvalue Problem
title_full_unstemmed A Test Matrix for an Inverse Eigenvalue Problem
title_sort test matrix for an inverse eigenvalue problem
publisher Hindawi Limited
series Journal of Applied Mathematics
issn 1110-757X
1687-0042
publishDate 2014-01-01
description We present a real symmetric tridiagonal matrix of order n whose eigenvalues are {2k}k=0n-1 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l+1}l=0n-2. The matrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution of a spring-mass inverse problem incorporating the test matrix is provided.
url http://dx.doi.org/10.1155/2014/515082
work_keys_str_mv AT gmlgladwell atestmatrixforaninverseeigenvalueproblem
AT thjones atestmatrixforaninverseeigenvalueproblem
AT nbwillms atestmatrixforaninverseeigenvalueproblem
AT gmlgladwell testmatrixforaninverseeigenvalueproblem
AT thjones testmatrixforaninverseeigenvalueproblem
AT nbwillms testmatrixforaninverseeigenvalueproblem
_version_ 1725520000954925056