A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels

Photovoltaic (PV) panels installation has become one of the major technologies used for energy production worldwide. Knowledge and competitive prices are the main reasons for the spread usage and expanded exploiting of PV systems. Accordingly, this creates several challenges for manufacturers and cu...

Full description

Bibliographic Details
Main Authors: Mathhar Bdour, Zakariya Dalala, Mohammad Al-Addous, Ashraf Radaideh, Aseel Al-Sadi
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/16/6416
Description
Summary:Photovoltaic (PV) panels installation has become one of the major technologies used for energy production worldwide. Knowledge and competitive prices are the main reasons for the spread usage and expanded exploiting of PV systems. Accordingly, this creates several challenges for manufacturers and customers, mainly, the quality of PV panels to withstand environmental conditions during service lifetime. Hence, the quality of PV panels is a vital aspect. By thinking of PV power plants, it appears that some factors should be considered, like the developing microcracks (µcracks). An issue like that increases the chances of having power loss during the operation phase. Notably, µcracks develop in different shapes and orientations; the variation depends on what causes them. This study is a presentation and summary of data collected from different projects in Jordan to describe the effect of each µcracks shape on power loss, aiming to give decision makers an indication to decide whether to replace the faulty panels or not, depending on their own conditions and projects sizes. Hence, in this study, it was found that the µcracks have impacted power loss differently and recorded power reduction of percentages of 0.82–3.21% for poly-crystalline technology. Variation in power degradation depends on the module situation; whether it is stocked in facility or operated on-site. In the mono-crystalline technology case, the power losses varied between 0.55% and 0.9%, with the exception of some samples from both technologies that have effects other than microcracks, which affected power severely. Furthermore, a general overview is provided for µcracks before installation.
ISSN:2071-1050