Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study
It has been demonstrated, that long-term chronic tryptophan deficiency, results in decreased serotonin synthesis, which may lead to low bone mass and low bone formation. Findings from studies in male patients with idiopathic osteoporosis suggested a decreased transport of tryptophan in erythrocytes...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-06-01
|
Series: | Bone Reports |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352187218300020 |
id |
doaj-e0ca15bb439e462cb5f9698e427b37a4 |
---|---|
record_format |
Article |
spelling |
doaj-e0ca15bb439e462cb5f9698e427b37a42020-11-24T21:08:00ZengElsevierBone Reports2352-18722018-06-0182528Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro studyYlva Pernow0Rami Shahror1Shikha Acharya2Lena Jahnson3Ravi Vumma4Nikolaos Venizelos5Department of Molecular Medicine and Surgery, Endocrine and Diabetes Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, SwedenNGBI, Neuropsychiatric Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE 701 82 Örebro, SwedenNGBI, Neuropsychiatric Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE 701 82 Örebro, SwedenDepartment of Internal Medicine, Örebro University Hospital, SE 701 85 Örebro, SwedenFaculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, SwedenNGBI, Neuropsychiatric Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden; Corresponding author at: School of Medical Sciences, Campus USÖ, Örebro University, SE-701 82 Örebro, Sweden.It has been demonstrated, that long-term chronic tryptophan deficiency, results in decreased serotonin synthesis, which may lead to low bone mass and low bone formation. Findings from studies in male patients with idiopathic osteoporosis suggested a decreased transport of tryptophan in erythrocytes of osteoporotic patients, indicating that serotonin system defects may be involved in the etiology of low bone mass. Tryptophan is the precursor of serotonin, and a disturbed transport of tryptophan is implicated in altered serotonin synthesis. However, no study has investigated the tryptophan transport kinetics in MIO patients. The aim of this study is to investigate the kinetic parameters of tryptophan transport in fibroblasts derived from MIO patients compared to age and sex matched controls.Fibroblast cells were cultured from skin biopsies obtained from 14 patients diagnosed with Male Idiopathic Osteoporosis and from 13 healthy age-sex matched controls, without a diagnosis of osteoporosis. Transport of the amino acid tryptophan across the cell membrane was measured by the cluster tray method. The kinetic parameters, maximal transport capacity (Vmax) and affinity constant (Km) were determined by using the Lineweaver-Burke plot equation.The results of this study have shown a significantly lower mean value for Vmax (p=0.0138) and lower Km mean value (p=0.0009) of tryptophan transport in fibroblasts of MIO patients compared to the control group. A lower Vmax implied a decreased tryptophan transport availability in MIO patients.In conclusion, reduced cellular tryptophan availability in MIO patients might result in reduced brain serotonin synthesis and its endogenous levels in peripheral tissues, and this may contribute to low bone mass/formation. The findings of the present study could contribute to the etiology of idiopathic osteoporosis and for the development of novel approaches for diagnosis, treatment and management strategies of MIO. Keywords: Male Idiopathic Osteoporosis, Fibroblasts, Tryptophan, Serotonin, Amino acid transporthttp://www.sciencedirect.com/science/article/pii/S2352187218300020 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ylva Pernow Rami Shahror Shikha Acharya Lena Jahnson Ravi Vumma Nikolaos Venizelos |
spellingShingle |
Ylva Pernow Rami Shahror Shikha Acharya Lena Jahnson Ravi Vumma Nikolaos Venizelos Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study Bone Reports |
author_facet |
Ylva Pernow Rami Shahror Shikha Acharya Lena Jahnson Ravi Vumma Nikolaos Venizelos |
author_sort |
Ylva Pernow |
title |
Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study |
title_short |
Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study |
title_full |
Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study |
title_fullStr |
Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study |
title_full_unstemmed |
Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study |
title_sort |
aberrant tryptophan transport in cultured fibroblast from patients with male idiopathic osteoporosis: an in vitro study |
publisher |
Elsevier |
series |
Bone Reports |
issn |
2352-1872 |
publishDate |
2018-06-01 |
description |
It has been demonstrated, that long-term chronic tryptophan deficiency, results in decreased serotonin synthesis, which may lead to low bone mass and low bone formation. Findings from studies in male patients with idiopathic osteoporosis suggested a decreased transport of tryptophan in erythrocytes of osteoporotic patients, indicating that serotonin system defects may be involved in the etiology of low bone mass. Tryptophan is the precursor of serotonin, and a disturbed transport of tryptophan is implicated in altered serotonin synthesis. However, no study has investigated the tryptophan transport kinetics in MIO patients. The aim of this study is to investigate the kinetic parameters of tryptophan transport in fibroblasts derived from MIO patients compared to age and sex matched controls.Fibroblast cells were cultured from skin biopsies obtained from 14 patients diagnosed with Male Idiopathic Osteoporosis and from 13 healthy age-sex matched controls, without a diagnosis of osteoporosis. Transport of the amino acid tryptophan across the cell membrane was measured by the cluster tray method. The kinetic parameters, maximal transport capacity (Vmax) and affinity constant (Km) were determined by using the Lineweaver-Burke plot equation.The results of this study have shown a significantly lower mean value for Vmax (p=0.0138) and lower Km mean value (p=0.0009) of tryptophan transport in fibroblasts of MIO patients compared to the control group. A lower Vmax implied a decreased tryptophan transport availability in MIO patients.In conclusion, reduced cellular tryptophan availability in MIO patients might result in reduced brain serotonin synthesis and its endogenous levels in peripheral tissues, and this may contribute to low bone mass/formation. The findings of the present study could contribute to the etiology of idiopathic osteoporosis and for the development of novel approaches for diagnosis, treatment and management strategies of MIO. Keywords: Male Idiopathic Osteoporosis, Fibroblasts, Tryptophan, Serotonin, Amino acid transport |
url |
http://www.sciencedirect.com/science/article/pii/S2352187218300020 |
work_keys_str_mv |
AT ylvapernow aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy AT ramishahror aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy AT shikhaacharya aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy AT lenajahnson aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy AT ravivumma aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy AT nikolaosvenizelos aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy |
_version_ |
1716761213181886464 |