Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study

It has been demonstrated, that long-term chronic tryptophan deficiency, results in decreased serotonin synthesis, which may lead to low bone mass and low bone formation. Findings from studies in male patients with idiopathic osteoporosis suggested a decreased transport of tryptophan in erythrocytes...

Full description

Bibliographic Details
Main Authors: Ylva Pernow, Rami Shahror, Shikha Acharya, Lena Jahnson, Ravi Vumma, Nikolaos Venizelos
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Bone Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2352187218300020
id doaj-e0ca15bb439e462cb5f9698e427b37a4
record_format Article
spelling doaj-e0ca15bb439e462cb5f9698e427b37a42020-11-24T21:08:00ZengElsevierBone Reports2352-18722018-06-0182528Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro studyYlva Pernow0Rami Shahror1Shikha Acharya2Lena Jahnson3Ravi Vumma4Nikolaos Venizelos5Department of Molecular Medicine and Surgery, Endocrine and Diabetes Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, SwedenNGBI, Neuropsychiatric Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE 701 82 Örebro, SwedenNGBI, Neuropsychiatric Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE 701 82 Örebro, SwedenDepartment of Internal Medicine, Örebro University Hospital, SE 701 85 Örebro, SwedenFaculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, SwedenNGBI, Neuropsychiatric Research Laboratory, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden; Corresponding author at: School of Medical Sciences, Campus USÖ, Örebro University, SE-701 82 Örebro, Sweden.It has been demonstrated, that long-term chronic tryptophan deficiency, results in decreased serotonin synthesis, which may lead to low bone mass and low bone formation. Findings from studies in male patients with idiopathic osteoporosis suggested a decreased transport of tryptophan in erythrocytes of osteoporotic patients, indicating that serotonin system defects may be involved in the etiology of low bone mass. Tryptophan is the precursor of serotonin, and a disturbed transport of tryptophan is implicated in altered serotonin synthesis. However, no study has investigated the tryptophan transport kinetics in MIO patients. The aim of this study is to investigate the kinetic parameters of tryptophan transport in fibroblasts derived from MIO patients compared to age and sex matched controls.Fibroblast cells were cultured from skin biopsies obtained from 14 patients diagnosed with Male Idiopathic Osteoporosis and from 13 healthy age-sex matched controls, without a diagnosis of osteoporosis. Transport of the amino acid tryptophan across the cell membrane was measured by the cluster tray method. The kinetic parameters, maximal transport capacity (Vmax) and affinity constant (Km) were determined by using the Lineweaver-Burke plot equation.The results of this study have shown a significantly lower mean value for Vmax (p=0.0138) and lower Km mean value (p=0.0009) of tryptophan transport in fibroblasts of MIO patients compared to the control group. A lower Vmax implied a decreased tryptophan transport availability in MIO patients.In conclusion, reduced cellular tryptophan availability in MIO patients might result in reduced brain serotonin synthesis and its endogenous levels in peripheral tissues, and this may contribute to low bone mass/formation. The findings of the present study could contribute to the etiology of idiopathic osteoporosis and for the development of novel approaches for diagnosis, treatment and management strategies of MIO. Keywords: Male Idiopathic Osteoporosis, Fibroblasts, Tryptophan, Serotonin, Amino acid transporthttp://www.sciencedirect.com/science/article/pii/S2352187218300020
collection DOAJ
language English
format Article
sources DOAJ
author Ylva Pernow
Rami Shahror
Shikha Acharya
Lena Jahnson
Ravi Vumma
Nikolaos Venizelos
spellingShingle Ylva Pernow
Rami Shahror
Shikha Acharya
Lena Jahnson
Ravi Vumma
Nikolaos Venizelos
Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study
Bone Reports
author_facet Ylva Pernow
Rami Shahror
Shikha Acharya
Lena Jahnson
Ravi Vumma
Nikolaos Venizelos
author_sort Ylva Pernow
title Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study
title_short Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study
title_full Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study
title_fullStr Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study
title_full_unstemmed Aberrant tryptophan transport in cultured fibroblast from patients with Male Idiopathic Osteoporosis: An in vitro study
title_sort aberrant tryptophan transport in cultured fibroblast from patients with male idiopathic osteoporosis: an in vitro study
publisher Elsevier
series Bone Reports
issn 2352-1872
publishDate 2018-06-01
description It has been demonstrated, that long-term chronic tryptophan deficiency, results in decreased serotonin synthesis, which may lead to low bone mass and low bone formation. Findings from studies in male patients with idiopathic osteoporosis suggested a decreased transport of tryptophan in erythrocytes of osteoporotic patients, indicating that serotonin system defects may be involved in the etiology of low bone mass. Tryptophan is the precursor of serotonin, and a disturbed transport of tryptophan is implicated in altered serotonin synthesis. However, no study has investigated the tryptophan transport kinetics in MIO patients. The aim of this study is to investigate the kinetic parameters of tryptophan transport in fibroblasts derived from MIO patients compared to age and sex matched controls.Fibroblast cells were cultured from skin biopsies obtained from 14 patients diagnosed with Male Idiopathic Osteoporosis and from 13 healthy age-sex matched controls, without a diagnosis of osteoporosis. Transport of the amino acid tryptophan across the cell membrane was measured by the cluster tray method. The kinetic parameters, maximal transport capacity (Vmax) and affinity constant (Km) were determined by using the Lineweaver-Burke plot equation.The results of this study have shown a significantly lower mean value for Vmax (p=0.0138) and lower Km mean value (p=0.0009) of tryptophan transport in fibroblasts of MIO patients compared to the control group. A lower Vmax implied a decreased tryptophan transport availability in MIO patients.In conclusion, reduced cellular tryptophan availability in MIO patients might result in reduced brain serotonin synthesis and its endogenous levels in peripheral tissues, and this may contribute to low bone mass/formation. The findings of the present study could contribute to the etiology of idiopathic osteoporosis and for the development of novel approaches for diagnosis, treatment and management strategies of MIO. Keywords: Male Idiopathic Osteoporosis, Fibroblasts, Tryptophan, Serotonin, Amino acid transport
url http://www.sciencedirect.com/science/article/pii/S2352187218300020
work_keys_str_mv AT ylvapernow aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy
AT ramishahror aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy
AT shikhaacharya aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy
AT lenajahnson aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy
AT ravivumma aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy
AT nikolaosvenizelos aberranttryptophantransportinculturedfibroblastfrompatientswithmaleidiopathicosteoporosisaninvitrostudy
_version_ 1716761213181886464