Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity
A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity an...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/5/511 |
id |
doaj-e0c1a58adc974e7f8b28ffb8b3174d22 |
---|---|
record_format |
Article |
spelling |
doaj-e0c1a58adc974e7f8b28ffb8b3174d222021-04-23T23:03:21ZengMDPI AGEntropy1099-43002021-04-012351151110.3390/e23050511Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum GravityClaudio Cremaschini0Massimo Tessarotto1Research Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezručovo nám.13, 746 01 Opava, Czech RepublicResearch Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezručovo nám.13, 746 01 Opava, Czech RepublicA new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass <i>M</i> of the black hole, scaling as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi><mo>∼</mo><msup><mi>M</mi><mn>3</mn></msup></mrow></semantics></math></inline-formula>; (b) for supermassive black holes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> is typically orders of magnitude larger than the Planck length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. Instead, for typical stellar-mass black holes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> may drop well below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons.https://www.mdpi.com/1099-4300/23/5/511covariant quantum gravitycosmological constantSchwarzschild–deSitter space-timeevent horizonstochastic effectstunneling phenomena |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Claudio Cremaschini Massimo Tessarotto |
spellingShingle |
Claudio Cremaschini Massimo Tessarotto Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity Entropy covariant quantum gravity cosmological constant Schwarzschild–deSitter space-time event horizon stochastic effects tunneling phenomena |
author_facet |
Claudio Cremaschini Massimo Tessarotto |
author_sort |
Claudio Cremaschini |
title |
Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity |
title_short |
Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity |
title_full |
Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity |
title_fullStr |
Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity |
title_full_unstemmed |
Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity |
title_sort |
physical properties of schwarzschild–desitter event horizon induced by stochastic quantum gravity |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-04-01 |
description |
A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass <i>M</i> of the black hole, scaling as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi><mo>∼</mo><msup><mi>M</mi><mn>3</mn></msup></mrow></semantics></math></inline-formula>; (b) for supermassive black holes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> is typically orders of magnitude larger than the Planck length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. Instead, for typical stellar-mass black holes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> may drop well below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons. |
topic |
covariant quantum gravity cosmological constant Schwarzschild–deSitter space-time event horizon stochastic effects tunneling phenomena |
url |
https://www.mdpi.com/1099-4300/23/5/511 |
work_keys_str_mv |
AT claudiocremaschini physicalpropertiesofschwarzschilddesittereventhorizoninducedbystochasticquantumgravity AT massimotessarotto physicalpropertiesofschwarzschilddesittereventhorizoninducedbystochasticquantumgravity |
_version_ |
1721512224055361536 |