Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity

A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity an...

Full description

Bibliographic Details
Main Authors: Claudio Cremaschini, Massimo Tessarotto
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/5/511
id doaj-e0c1a58adc974e7f8b28ffb8b3174d22
record_format Article
spelling doaj-e0c1a58adc974e7f8b28ffb8b3174d222021-04-23T23:03:21ZengMDPI AGEntropy1099-43002021-04-012351151110.3390/e23050511Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum GravityClaudio Cremaschini0Massimo Tessarotto1Research Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezručovo nám.13, 746 01 Opava, Czech RepublicResearch Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezručovo nám.13, 746 01 Opava, Czech RepublicA new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass <i>M</i> of the black hole, scaling as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi><mo>∼</mo><msup><mi>M</mi><mn>3</mn></msup></mrow></semantics></math></inline-formula>; (b) for supermassive black holes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> is typically orders of magnitude larger than the Planck length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. Instead, for typical stellar-mass black holes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> may drop well below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons.https://www.mdpi.com/1099-4300/23/5/511covariant quantum gravitycosmological constantSchwarzschild–deSitter space-timeevent horizonstochastic effectstunneling phenomena
collection DOAJ
language English
format Article
sources DOAJ
author Claudio Cremaschini
Massimo Tessarotto
spellingShingle Claudio Cremaschini
Massimo Tessarotto
Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity
Entropy
covariant quantum gravity
cosmological constant
Schwarzschild–deSitter space-time
event horizon
stochastic effects
tunneling phenomena
author_facet Claudio Cremaschini
Massimo Tessarotto
author_sort Claudio Cremaschini
title Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity
title_short Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity
title_full Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity
title_fullStr Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity
title_full_unstemmed Physical Properties of Schwarzschild–deSitter Event Horizon Induced by Stochastic Quantum Gravity
title_sort physical properties of schwarzschild–desitter event horizon induced by stochastic quantum gravity
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2021-04-01
description A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass <i>M</i> of the black hole, scaling as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi><mo>∼</mo><msup><mi>M</mi><mn>3</mn></msup></mrow></semantics></math></inline-formula>; (b) for supermassive black holes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> is typically orders of magnitude larger than the Planck length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. Instead, for typical stellar-mass black holes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi><mi>r</mi></mrow></semantics></math></inline-formula> may drop well below <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>l</mi><mi>P</mi></msub></semantics></math></inline-formula>. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons.
topic covariant quantum gravity
cosmological constant
Schwarzschild–deSitter space-time
event horizon
stochastic effects
tunneling phenomena
url https://www.mdpi.com/1099-4300/23/5/511
work_keys_str_mv AT claudiocremaschini physicalpropertiesofschwarzschilddesittereventhorizoninducedbystochasticquantumgravity
AT massimotessarotto physicalpropertiesofschwarzschilddesittereventhorizoninducedbystochasticquantumgravity
_version_ 1721512224055361536